Метеорологические условия

1.1 Синоптический обзор

Кинематические карты, рис. 1-1, 1-2 и 1-4 содержат положение циклонов (красный цвет) и антициклонов (синий цвет) на 00 ВСВ каждых суток декады и траектории их смещения. За барическими объектами закреплен номер, по которому из ниже следующих таблиц можно определить точные координаты и давление в центре объекта также в срок 00 ВСВ.

I декада января 2014 г.

Японское море

В начале декады, 1-го января, над западной частью моря на волне арктического фронта углубился циклон, который, интенсивно углубляясь, перемещался на северо-восток со скоростью 60 км/ч и в конце суток с давлением в центре 980 гПа покинул акваторию моря. Циклон вызвал усиление ветра в северной части моря до 25 м/с, высота волн развивалась до 3–4 м, на востоке моря – до 5 м. Видимость при снеге понижалась до 500–1000 м.

Следующий циклон прошел над центральной частью Японского моря 3 января, он следовал в восточном направлении со скорость $40\,$ км/ч. Максимальная скорость ветра, вызванная этим циклоном, была $15{\text -}17\,$ м/с, высота волн достигала $2\,$ м, видимость при снеге составляла $1{\text -}3\,$ км.

В течение 5–6 января над акваторией моря перемещался антициклон с давлением в центре 1028 гПа. 7 января над северной частью моря проследовала ложбина циклона, центр которого смещался вдоль 50 параллели. В конце декады над акваторией Японского моря образовались повышенные барические градиенты между областью активного циклогенеза в северо-западной части Тихого океана и антициклоном, расположенного над районами Монголии и Китая. Скорость ветра в Японском море 9 января достигала 15–20 м/с, высота волн – 3–4 м, местами отмечались снежные заряды. В северной половине моря на протяжении всей декады наблюдалось обледенение судов.

Охотское море

В первую половину декады погодные условия определял глубокий циклон, который в первых числах декады смещался над южной частью моря в восточном направлении со скоростью 20~км/ч с давлением в центре 972~гПа. 3~января циклон вышел на акваторию Тихого океана к востоку от Камчатки. Максимальная скорость ветра в первую половину декады была 20-25~м/c, наибольшая высота волн отмечалась на юге моря -5-6~м, видимость при снеге понижалась до 300-500~м.

Во второй половине декады барические градиенты над акваторией моря уменьшились, отмечались частные малоподвижные циклоны (под высотным центром) с давлением в центрах 1000–1004 гПа. 10 января над южной половиной моря давление в центре одного из циклонов составляла 996 гПа.

На западе моря скорость северного ветра на протяжении всей декады составляла 15–20 м/с. В центральной и восточной частях моря во второй половине декады скорость ветра не превышала 9–14 м/с, высота волн была около 2 м, местами отмечались снежные заряды, обледенение судов.

Берингово море

В первой декаде над Беринговым морем, как правило, располагалась алеутская депрессия, которая регулярно пополнялась циклонами, выходящими с акватории Тихого океана. Так, 2 января на акваторию моря вышел циклон с давлением в центре 976 гПа. Он смещался на северо-восток со скоростью 30 км/ч и 3 января вышел на Аляску. Циклон вызвал усиление ветра до 17–22 м/с, высоту волн до 3–4 м, снег.

3 января на западную часть моря начал влиять циклон, который подошедший с юга к Алеутской гряде. Ветер на западе моря усилился 25–30 м/с, высота волн возросла до 6–7 м, видимость при снеге понижалась до 200–500 м. Минимальное давление в центре циклона отмечалось 4 января – 964 гПа. 5 января циклон вышел на Камчатку и заполнился.

В течение 6–7 января в районе Алеутских островов располагалась депрессия, которая вышла с юга. 8 числа она переместилась на акваторию моря, давление в ее центре составляло 980 гПа, прослеживалась на картах погоды до конца декады. Скорость ветра над акваторией Берингова моря составляла 15–20 м/с, высота волн была не менее 3–4 м, временами отмечались снежные заряды, на севере моря – обледенение судов.

Северо-западная часть Тихого океана

В первой декаде над северо-западной частью Тихого океана продолжалась циклоническая деятельность. 1-го декабря в район о. Хоккайдо с Японского моря вышел циклон с давлением в центре 988 гПа. В течение 2–3 декабря он, углубляясь, смещался на северо-восток со скоростью 40 км/ч и 4 января вышел на акваторию Берингова моря глубиной 964 гПа. Циклон вызвал на большей части акватории усиление ветра до 25 м/с, волнение моря до 6–7 м, дожди, на севере района – снег. Погоду на юге района формировали антициклоны, давление в области которых составляло 1018–1022 гПа. Они перемещались вдоль 28–30 широты на восток со скоростью 30–40 км/ч.

4 января к югу от Курил вышел следующий циклон с давлением в центре 998 гПа. В течение 2-х суток циклон углублялся и смещался на северо-восток со скоростью 30–40 км/ч, 6 января вышел на северо-восток района глубиной 964 гПа, где заполнился. Циклон вызвал усиление ветра до 18–23 м/с, волнение моря 5–6 м, осадки в виде дождя и в виде снега в тылу циклона в районе Курильских островов.

6—8 января на юге акватории на волне полярного фронта образовался молодой циклон с давлением в центре 1008 гПа, который в течение 2-х суток углублялся, смещался на северо-восток со скоростью 40 км/ч и определял погоду на юго-востоке района: ветер 18—23 м/с, волнение моря до 5 м, дожди.

В течение 8–10 января по югу акватории вдоль 30-й широты проследовал антициклон с давлением в центре 1026–1028 гПа. 8 января от о. Кюсю на юго-запад района вышел следующий циклон с давлением в центре 994 гПа. Циклон в течение 9–10 января смещался со скоростью 50–60 км/ч на северо-восток, углубился до 976 гПа. Он вызвал усиление ветра до 25 м/с, волнение моря 6–7 м, осадки.

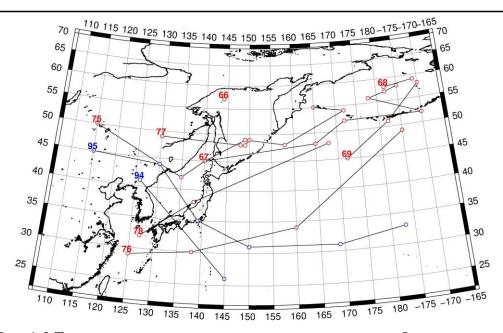


Рис. 1-2 Траектории движения циклонов и антициклонов в I декаде января

		Циклоны	[Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
66	01.01.2014	57	144	988	94	02.01.2014	41	126	1024		
67	01.01.2014	45	140	988		03.01.2014	26	145	1022		
	02.01.2014	49	149	972	95	05.01.2014	45	115	1032		
	03.01.2014	48	158	976		06.01.2014	44	130	1030		
	04.01.2014	54	172	964		07.01.2014	35	139	1028		
	05.01.2014	55	165	974		08.01.2014	31	150	1024		
68	01.01.2014	58	182	982		09.01.2014	31	169	1026		
	02.01.2014	59	189	992		10.01.2014	33	183	1028		
69	01.01.2014	45	172	988							
	02.01.2014	51	182	972							
	03.01.2014	58	190	988							
75	02.01.2014	50	115	1008							
	03.01.2014	42	135	1010							
	04.01.2014	45	140	998							
	05.01.2014	48	165	980							
	06.01.2014	52	172	964							
	07.01.2014	52	190	968							
	08.01.2014	56	178	976							
	09.01.2014	57	182	980							
	10.01.2014	58	185	984							
76	03.01.2014	29	125	1014							
	04.01.2014	30	138	1008							
	05.01.2014	34	160	1002							
	06.01.2014	49	185	976							
77	07.01.2014	49	130	1014							
	08.01.2014	48	148	1014							

		Циклоны	[Антициклоны				
	09.01.2014	48	149	1004					
	10.01.2014	49	150	996					
78	08.01.2014	32	127	1014					
	09.01.2014	38	138	994					
	10.01.2014	48	168	976					

II декада января 2014 г.

Японское море

В первую половину декады над Японским морем преобладала зимняя муссонная циркуляция, которая нарушалась прохождением неглубоких ложбин над северной частью моря. Так, 12 января проследовала ложбина с неглубоким циклоном 1024 гПа, а 15 числа давление в центре циклона составило 1020 гПа.

Обширный циклон с давлением в центре 1016 гПа вышел на центральную часть Японского моря в самом конце декады. Он смещался на восток со скоростью 40 км/ч. Скорость ветра на протяжении декады была 13–18 м/с, высота волн -3–4 м, местами отмечался снег, в северной половине моря – обледенение судов.

Охотское море

В Охотском море синоптическая ситуация в первую половину декады существенно не менялась, определялась западной периферией депрессии, которая располагалась над Беринговым морем.

В течение 13–14 января вдоль Курильских островов со скоростью 20–30 км/ч проследовал циклон с давлением в центре 988 гПа, на Колыму с районов Якутии переместился антициклон с давлением в центре 1044 гПа. Эти барические образования обусловили напряженные барические градиенты над Охотским морем.

В середине декады, 16 января, барические градиенты вблизи берегов Камчатки ослабели за счёт образования неглубокого циклона, который в последующие дни перемещался к югу со скоростью 20 км/ч и 18 января покинул акваторию моря. Скорость ветра в первую декаду составляла 15–20 м/с, в конце декады уменьшилась до 11–16 м/с, максимальная высота волн была 3–4 м, местами шел снег, отмечалось обледенение судов.

Берингово море

В Беринговом море в начале декады наблюдался активный циклогенез. Алеутская депрессия занимала всю акваторию моря. Минимальное давление в ее центре составляло 968 гПа. Скорость ветра на акватории моря достигала $20–25\,$ м/с, высота волн развивалась до $5–6\,$ м, видимость при снеге понижалась до $500–1000\,$ м.

14 января депрессия переместилась на Аляску, над акваторией моря сформировались значительные барические градиенты между депрессией, расположенной южнее Алеутских островов, и антициклоном с давлением в центре 1044 гПа, находящимся над Колымой. Значительные барические градиенты сохранялись до 17 января.

В конце декады, 18 января, с акватории Тихого океана на Бристольский залив вышел глубокий циклон с давлением в центре 952 гПа. Он смещался на север, северо-запад со скоростью 30–40 км/ч, и 20 числа, существенно заполнившись, находился над северной частью моря южнее Анадырского залива. Циклон обусловил штормовой ветер до 25–30 м/с в восточной части Берингова моря, высота волн достигала 5–6 м, видимость при снеге понижалась до 500–1000 м. К концу декады скорость ветра уменьшилась до 9–14 м/с, высота волн – до 3–4 м, сильные осадки прекратились.

Северо-западная часть Тихого океана

Во второй декаде января в северо-западной части Тихого океана, по-прежнему, преобладал процесс циклогенеза, отдельные ядра сибирского антициклона проникали на юг акватории океана часть через Желтое и Японское моря.

10 января на северо-западе акватории располагался циклон с давлением в центре 976 гПа. 11 января он, углубляясь, со скоростью 30–40 км/ч смещался на восток, северо-восток, вышел в Берингово море с давлением в центре 970 гПа. На акватории океана циклон вызвал усиление ветра до 25 м/с, волнение моря 6–7 м, осадки в виде дождя, на севере в районе Алеутских островов в виде снега.

12 января восточнее о. Хонсю на волне полярного фронта образовался молодой циклон с давлением в центре 1014 гПа. 13–15 января он углублялся и смещался вдоль 40–42 широты на восток со скоростью 40–50 км/ч, 18 января вышел за пределы северо-западной части океана. Минимальная глубина циклона была 978 гПа. При его смещении наблюдалось усиление ветра до 25 м/с, волнение моря развивалось до 6–7 м, шли дожди.

16 января на юг района вышел циклон с давлением в центре 996 гПа. В течение двух суток циклон смещался над юго-восточной частью акватории на восток со скоростью 50 км/ч. Минимальное давление в центре было 972 гПа. Смещение циклона вызвало усиление ветра до 25 м/с, волнение моря 6–7 м, дожди на юго-востоке района.

19 января на юго-запад акватории вышел следующий циклон с давлением в центре 998 гПа. В течение следующих суток циклон, углубляясь, смещался на восток, 20 января углубился до 980 гПа. Циклон обусловил усиление ветра до 25 м/с, волнение моря до 6–7 м, дожди на юговостоке района.

Антициклоны — ядра, отделившиеся от сибирского антициклона, наблюдались на югозападе акватории 12–13 января, 15–16 января и 17–18 января. Смещались примерно вдоль 32-ой широты на восток, юго-восток со скоростью 30 км/ч. Давление в центрах составляло 1024 гПа, 1020 гПа и 1024 гПа, соответственно. 18 января на акваторию океана к востоку от о. Хоккайдо вышло ядро сибирского антициклона с давлением в центре 1020 гПа; 19 января оно переместилось на центральную часть района и разрушилось.

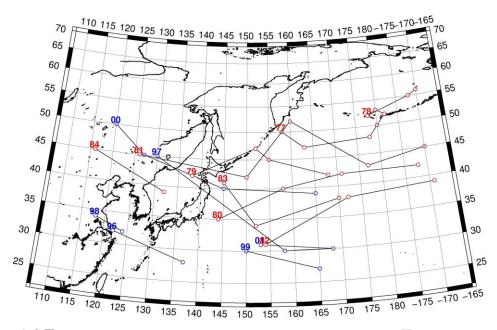


Рис. 1-3 Траектории движения циклонов и антициклонов во II декаде января

		Циклоны	[Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
77	11.01.2014	50	158	988	96	11.01.2014	32	122	1034		
	12.01.2014	47	163	988		12.01.2014	28	137	1028		
	13.01.2014	48	178	988	97	14.01.2014	45	130	1038		
	14.01.2014	50	180	988		15.01.2014	30	158	1024		
	15.01.2014	52	182	988		16.01.2014	30	168	1020		
	16.01.2014	53	180	994	98	15.01.2014	34	118	1036		
	17.01.2014	52	178	996		16.01.2014	32	124	1030		
78	11.01.2014	52	178	970	99	17.01.2014	30	150	1020		
	12.01.2014	55	188	968		18.01.2014	27	165	1018		
	13.01.2014	56	190	976	00	16.01.2014	50	120	1040		
79	12.01.2014	42	138	1014		17.01.2014	45	127	1034		
	13.01.2014	47	152	992		18.01.2014	40	145	1020		
	14.01.2014	45	155	992		19.01.2014	39	165	1012		
	15.01.2014	42	168	994	01	12.01.2014	31	153	1024		
80	12.01.2014	35	144	1014		13.01.2014	30	168	1020		
	13.01.2014	40	158	996							
	14.01.2014	42	171	980							
	15.01.2014	42	188	978							
81	15.01.2014	45	126	1028							
	16.01.2014	42	150	1014							
	17.01.2014	52	160	996							
	18.01.2014	43	177	988							
	19.01.2014	45	190	980							
82	16.01.2014	31	154	996							
	17.01.2014	38	172	978							
	18.01.2014	39	191	972							
83	18.01.2014	41	145	1008							
	19.01.2014	34	152	998							
	20.01.2014	38	170	980							
84	19.01.2014	45	116	1018							
	20.01.2014	39	132	1016							

III декада января 2014 г.

Японское море

В течение третьей декады циркуляция зимнего муссона над Японским морем нарушалась циклонической деятельностью. В начале декады, 20 января, над южной частью моря со скоростью $40\,$ км/ч прошёл циклон, который $21\,$ января обусловил усиление северного ветра до $15–18\,$ м/с, высоту волн – до $2–3\,$ м, снег.

Следующая область низкого давления переместилась на акваторию Японского моря 24 января, а 25 числа с Жёлтого моря на юг Японского вышел циклон, который, углубляясь, смещался со скоростью 50 км/ч в северо-восточном направлении и 26 числа, перевалив Японские острова, вышел на акваторию Тихого океана. Скорость ветра в зоне циклона достигала 15–20 м/с, высота волн в восточной части моря составила 3–4 м, отмечался снег.

Во второй половине декады, 27 января, над южной половиной моря со скоростью 30 км/ч проследовал антициклон с давлением в центре 1028 гПа. В конце декады, 28 января, на север моря с территории Приморского края вышел ещё один циклон с давлением в центре 1000 гПа, который, смещаясь со скоростью 30 км/ч, пересёк Татарский пролив, в конце суток вышел на Охотское море. Скорость северного ветра над акваторией Японского моря составила 15–20 м/с, высота волн – 3–4 м, в северной части моря отмечалось быстрое обледенение судов.

В самом конце декады, 30 января, над северной половиной моря прошел циклон с давлением в центе 1002 гПа, 31 января он переместился на Охотское море, углубившись до 994 гПа. Этот циклон также вызвал усиление ветра на акватории моря до 15–20 м/с, волнение моря – до 3–4 м, видимость при снеге в северной половине моря была 1–3 км.

Почти в течение всей декады в северной половине моря наблюдалось обледенение судов

Охотское море

В течение декады синоптическая ситуация в Охотском море существенно не менялась, определялась западной периферией алеутской депрессии. Периодически в восточной и центральной частях моря под высотным циклоном образовывались частные малоподвижные циклоны с давлением в центре от 996-1000 гПа. Скорость ветра в течение декады составляла 13-17 м/с, высота волн -2-3 м, местами отмечались снежные заряды, обледенение судов.

В конце декады на акваторию моря вышло два глубоких циклона. Один из них 28 января располагался над южной частью Охотского моря с давлением в центре 994 гПа, он вышел с Японского моря. В последующие дни циклон перемещался на восток со скоростью 30 км/ч, углубился 29 числа в районе северных Курил до 984 гПа. Скорость ветра, связная с этим циклоном, достигала 25 м/с, высота волн 29 числа возрастала до 5–6 м, шёл снег.

Следующий циклон вышел на юг моря 30 января, тоже перемещался с Японского моря, давление в центре составляло 994 гПа. Смещаясь на северо-восток со скоростью 40 км/ч, 31 числа он вошел в систему другого циклона, который развивался вблизи Северных Курил. Скорость ветра в южной половине Охотского моря 31 января возрастала до 25 м/с, высота волн в конце суток 31 числа была 4 м.

Берингово море

Над Беринговым морем в течение декады преобладало поле низкого давления. В первую половину декады основной циклогенез отмечался в восточной части моря. Циклоны с юга пересекали восточную часть Алеутской гряды, смещались, постепенно заполняясь, к северу со скоростью 20–30 км/ч, вызывали сильный ветер до 15–20 м/с, высоту волн до 3–4 м, снег. Давление в центре циклона, который наблюдался 21 декабря, составило 970 гПа; давление в другом циклоне, который вышел на акваторию моря 24 января, – 978 гПа.

24 января от Командорских островов на западную часть Берингова моря переместился циклон с давлением в центре 992 гПа. Он прослеживался в этом районе до 27 января, обуславливая ветер не более 9–14м/с, волнение моря было не более 2 м.

Наиболее глубокий циклон вышел на западную часть моря в конце декады, 28 числа, давление в центре составило 960 гПа. Циклон вызвал усиление ветра до 25–30 м/с, высоту волн 5–6 м, видимость при снеге была менее 1 км. Постепенно заполняясь, циклон сохранял своё местоположение до конца декады.

Северо-западная часть Тихого океана

В первой половине декады в северо-западной части Тихого океана отмечался активный циклогенез. Один из циклонов вышел с Японского моря, углубляясь, перемещался на восток, северо-восток со скоростью 50 км/ч и 23 января вышел в западное полушарие с давлением в центре 980 гПа. Максимальная скорость ветра в зоне циклона была 25 м/с, высота волн – 6–7 м.

Следующий циклон образовался на волне полярного фронта в районе 33° с. ш., 150° в. д. 22 января. Скорость его смещения составляла 40–50 км/ч, минимальное давление в центре циклона при переходе в западное полушарие было 990 гПа. Скорость ветра в области циклона не превышала 15–20 м/с, высота волн -4–5 м.

26 января на север акватории с районов Японского моря вышел следующий циклон, который, интенсивно углубляясь, смещался на северо-восток со скоростью 40 км/ч и 28 числа подошёл к Командорским островам с давлением в центре 960 гПа. По этой же траектории с 28 по 30 января проследовал ещё один циклон с минимальным давлением в центре 980 гПа.

В конце декады произошло углубление циклона на волне холодного фронта вблизи острова Хоккайдо. Молодой циклон, интенсивно углубляясь, смещался на северо-восток со скоростью 60 км/ч и в конце суток 31 января подошёл к Командорским островам с давлением в центре 970 гПа. Максимальная скорость ветра в зоне циклонов достигала 25–28 м/с, высота волн – 5–7 м. Все циклоны сопровождались выпадением сильных осадков.

Антициклоны в третьей декаде перемещались над южной частью акватории. С 25 по 28 января вдоль 32° широты со скоростью $20{\text -}30$ км/ч перемещался антициклон с давлением в центре 1026 гПа. Вблизи 35 параллели с 29 по 31 января прошли еще два антициклона с давлением в центре $1026{\text -}1030$ гПа.

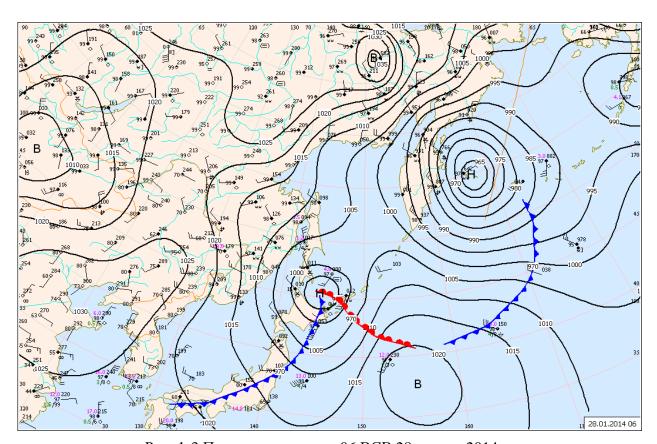


Рис. 1-3 Приземная карта за 06 ВСВ 28 января 2014 г.

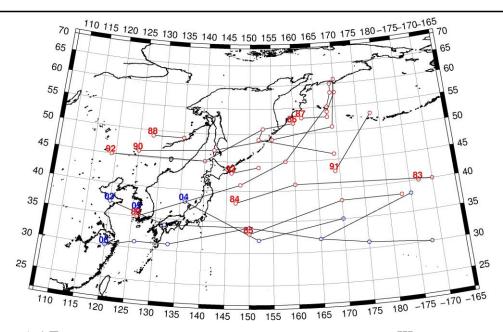


Рис. 1-4 Траектории движения циклонов и антициклонов в III декаде января

		Циклоны	[Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
83	21.01.2014	40	187	952	03	26.01.2014	37	120	1034		
84	21.01.2014	38	147	1006		27.01.2014	34	132	1028		
	22.01.2014	41	160	992		28.01.2014	34	150	1026		
	23.01.2014	40	190	980		29.01.2014	32	165	1022		
85	23.01.2014	33	150	1010		30.01.2014	38	185	1024		
	24.01.2014	38	170	994	04	29.01.2014	38	136	1028		
	25.01.2014	38	183	998		30.01.2014	32	152	1030		
86	21.01.2014	52	160	1006		31.01.2014	35	170	1030		
	22.01.2014	51	153	988	05	31.01.2014	36	126	1026		
	23.01.2014	49	152	1000	06	22.01.2014	30	120	1032		
	24.01.2014	46	169	998		23.01.2014	31	126	1030		
87	22.01.2014	53	162	998		24.01.2014	31	133	1026		
	23.01.2014	53	168	996		25.01.2014	34	150	1026		
	24.01.2014	54	168	992		26.01.2014	32	165	1026		
	25.01.2014	58	170	1000		27.01.2014	31	175	1026		
88	23.01.2014	49	128	1008		28.01.2014	30	188	1024		
	24.01.2014	49	135	1008							
89	25.01.2014	35	126	1014							
	26.01.2014	41	148	1000							
	27.01.2014	45	158	988							
	28.01.2014	55	168	960							
	29.01.2014	58	169	972							
	30.01.2014	60	169	984							
90	27.01.2014	46	125	1008							
	28.01.2014	47	142	1000							
	29.01.2014	49	155	984							

ЕЖЕМЕСЯЧНЫЙ ГИДРОМЕТЕОРОЛОГИЧЕКИЙ БЮЛЛЕТЕНЬ ДВНИГМИ

		Циклоны	I		Антициклоны				
	30.01.2014	51	169	980					
	31.01.2014	61	170	988					
91	28.01.2014	43	169	1004					
	29.01.2014	53	178	996					
92	29.01.2014	45	119	1000					
	30.01.2014	45	140	1002					
	31.01.2014	51	153	990					
93	30.01.2014	43	146	994					
	31.01.2014	44	152	986					

1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных анализа NCEP/NCAR и приведены ниже (рис. 1-5–1-7). Анализ термобарических полей сделан на базе средних за месяц карт геопотенциала на стандартном изобарическом уровне 500 гПа, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне 850 гПа.

Японское море

В январе высотное барическое поле над Дальним Востоком характеризовалось значительными отрицательными аномалиями (до -6—10 дам) над субполярными районами региона и положительными (до 1—3 дам) над субтропическими и прилегающими к ним умеренными широтами. Такое распределение аномалий геопотенциала является обратным к распределению в ноябре и декабре. При этом, профиль барического поля близок к среднему многолетнему, но барические градиенты в области фронтальной зоны возросли.

Барическое поле средней тропосферы над Японским морем характеризуется наличием зимней ложбины с напряженным барическим градиентом и высокой зональностью. Северная половина моря занята отрицательными аномалиями геопотенциальных высот (до 1–5 дам), южная часть моря в области положительных аномалий (1–3 дам), с максимумом на юго-западе моря.

Атмосферное давление у земной поверхности над большей частью Японского моря (кроме Татарского пролива) в среднем за месяц выше средних многолетних значений примерно на 1 гПа. Антициклон над Азией, занимая позицию близкую к средней многолетней, развит слабее обычного. Аномалии в его области отрицательные до 3—4 гПа. Его отроги на бассейн Лены, юг Азии и северо-западную часть Тихого океана развиты обычным образом (здесь аномалии давления незначительные, преимущественно положительные). Алеутская депрессия значительно глубже обычного, основной центр смещен на юго-восток Берингова моря. Здесь значительные отрицательные аномалии давления (до -11—5 гПа).

Температура воздуха в нижней тропосфере над Японским морем в январе понизилась по отношению к декабрю на 6-8 °C только над северной половиной моря. Распределена от -4 °C на юге до -22 °C на севере моря, что ниже нормы примерно на 1-2 °C для северной половины и выше на 1 °C на юго-западе моря.

Охотское море

На средней за месяц карте H_{500} над Охотским морем располагается обширный циклонический вихрь, как и положено в январе. Однако, геопотенциальные высоты в его области ниже нормы на 5–6 дам. Крайние южные районы моря находились под влиянием воздушных течений с запада.

У земли поле давления над Охотским морем характеризуется значительными градиентами между алеутской депрессией (ее западным центром южнее Командорских островов) и отрогами азиатского антициклона. Кроме этого, давление ниже нормы на 3–5 гПа над большей частью моря кроме крайнего юго-запада.

Температура воздуха в нижнем слое тропосферы в среднем за месяц распределена от -14 °C на юго-востоке моря до -24 °C на северо-западе. Температура понизилась за месяц на 5-10 °C. Это состояние ниже нормы на 1-2 °C для западных и северных районов моря (прилегающих к континенту).

Берингово море

На средней месячной карте за январь в средней тропосфере над Беринговым морем наблюдается обширная ложбина, аномалии геопотенциальных высот в ее области достигают 2-

7 дам. Рельеф барического поля обратный состоянию, отмеченному в декабре, когда над Беринговым морем преобладала антициклональная циркуляция.

У земной поверхности акватория моря во власти алеутской депрессии. Основной центр которой располагается над юго-восточными районами моря, вторичный — южнее Командорских островов. Давление над Беринговым морем в среднем за месяц ниже нормы на 7–11 гПа, максимальные аномалии давления наблюдаются на востоке моря.

Температура воздуха на уровне H_{850} в январе понизилась по отношению к декабрю на 4 °C над большей частью моря. Распределена от -4 на юго-востоке до -14 °C на северо-западной границе. Это состояние близко к норме для большей части акватории и выше нормы примерно на 1–4 °C для восточных районов моря.

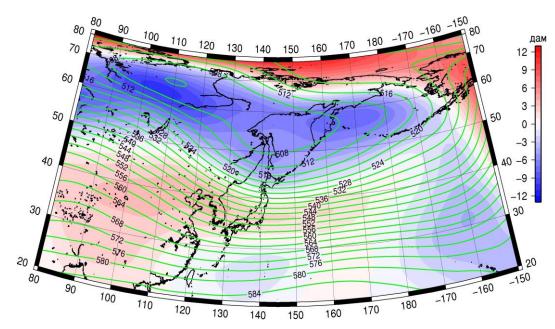


Рис. 1-5 Среднее поле H_{500} (изогипсы) и его аномалия (изополосы) в январе 2014 г. (дам)

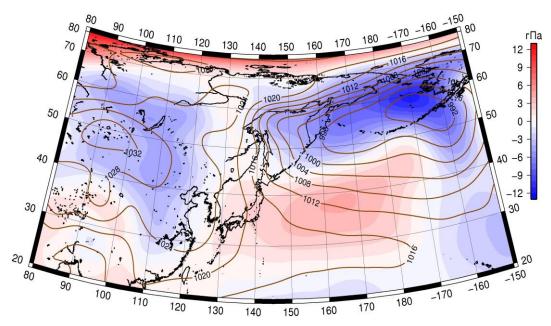


Рис. 1-6 Среднее поле давления у поверхности земли (изобары) и его аномалия (изополосы) в январе 2014 г. (гПа)

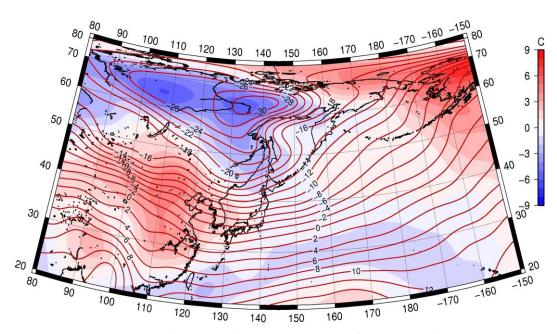


Рис. 1-7 Среднее поле Т850 (изотермы) и его аномалия (изополосы) в январе 2014 г. (°С)

1.3 Глобальные и региональные индексы циркуляции атмосферы

1.3.1 Зональный и меридиональный перенос воздуха над II е.с.р.

Характеристика основных воздушных течений в средней и нижней тропосфере за январь 2014 г. сделана на основе индексов циркуляции, приведенных ниже в таблице и на рис. 1-8–1-10. В данном разделе принята следующая терминология для характеристики индексов: норма $-\pm 0,3$ STD относительно нормы; незначительное отклонение от нормы $-\pm 0,4$ –0,7 STD относительно нормы; значительное отклонение от нормы $-\ge 2$ STD относительно нормы.

Японское море

В январе над акваторией Японского моря западно-восточный перенос воздуха в тропосфере был интенсивным (Kz составляет 1,4STD и 0,9STD в среднем и нижнем слое, соответственно). В зоне умеренных широт над II е. с. р. интенсивность западно-восточного переноса была тоже интенсивнее обычного (Kz составляет 0,9STD и 1,2STD для средней и нижней тропосферы, соответственно).

Межширотный обмен в средней тропосфере над Японским морем превышал норму (|Km| составляет 1,8STD) за счет большего количества движений с севера (стандартизованные значения Km равны -1,7STD). У земли межширотный обмен был слабее нормы (|Km| составляет -0,8STD) за счет слабых воздушных течений с севера (Кm составляет 0,8STD).

Над умеренной зоной II е. с. р. межширотный обмен в средней тропосфере был близок к норме (|Km| составляет -0,1STD), но перенос с севера незначительно превышал норму в ущерб течений воздуха с юга (Кm составляет -0,6STD). У земной поверхности межширотный обмен был слабым (|Km| составляет -1,0STD), баланс воздушных течений с севера и с юга мало отличался от нормы (|Km| составляет -0,3STD). Во всем слое преобладал перенос воздуха с севера (значения индекса отрицательные).

Охотское море

Над акваторией Охотского моря в средней тропосфере западно-восточный перенос воздуха был близок к норме (Kz составляет 0,3STD), течения воздуха с запада оставались преобладающими. У земной поверхности господствовал восточный перенос, однако его интенсивность была незначительно слабее нормы (Kz составляет 0,6STD). В зоне 50–70° с. ш. над II е. с. р. зональные течения воздуха в средней тропосфере были незначительно слабее нормы (Kz составляет -0,4STD), западный перенос был преобладающим. У земной поверхности преобладали течения с востока, интенсивность зональных течений была близка норме (Kz составляет -0,2STD).

Межширотный обмен над акваторией Охотского моря в среднем слое тропосферы был слабым (|Km| составляет -0,8STD), но баланс течений с юга и севера был близок к норме (Кm составляет -0,1STD, значение индекса положительное). У земли меридиональные движения наоборот, были интенсивнее обычного (|Km| составляет 0,9STD) за счет большего количества движений с севера (Кm составляет -0,9STD, значение индекса отрицательное). В нижнем слое преобладал перенос воздуха с севера, на высотах – с юга.

В целом в зоне 50–70° с. ш. над II е. с. р. межширотный обмен в средней тропосфере был близок к норме (|Km| составляет 0,1STD), воздушные течения с юга были развиты несколько сильнее обычного в ущерб течениям с севера (Кт составляет 0,5STD, значение индекса положительное). В нижнем слое тропосферы межширотный обмен превышал норму (|Km| составляет 0,9STD) за счет большего количества движений с севера (Кт составляет -0,9STD). Перенос воздуха с юга преобладал в среднем слое тропосферы, у земли господствовал воздух с севера.

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

11	Уровень	Ноябрь 2013			Декабрь 2013			Январь 2014		
Индекс*	(высота)	значение	ASTD	STD	значение	ASTD	STD	значение	ASTD	STD
Кz Ям		20598	-1,4	4348	18964	-1,8	4066	30222	1,4	4131
Кz Ом		10965	-0,8	4039	1633	-1,4	4974	6250	0,3	5034
Кz Бм		12099	0,3	5202	1930	-0,7	5235	3317	0,2	4698
Kz 35_50		17989	-2,2	3150	17029	-2,4	3091	25163	0,9	3398
Kz 50_70		10835	1,0	3274	3464	-0,6	2979	2037	-0,4	3193
Kz 35_70		14212	-0,6	1305	9648	-2,2	1800	12115	0,2	2057
Кт Ям		-776	0,1	1859	-3439	-0,4	1640	-6257	-1,7	1394
Кт Ом		3953	1,3	1849	2715	1,0	1469	1130	-0,1	1856
Кт Бм	500 гПа	2532	0,6	1619	3444	0,7	1619	3604	0,9	1260
Km 35_50	300 111a	-42	0,7	660	-448	0,6	797	-1576	-0,6	962
Km 50_70		306	1,1	584	579	1,2	702	254	0,5	741
Km 35_70		162	1,0	528	176	1,2	585	-501	0,0	728
Кт Ям		3644	0,3	1376	4773	0,1	1621	8570	1,8	1705
Кт Ом		6441	1,4	1959	4815	1,0	1787	2236	-0,8	2006
Кт Бм		4715	0,2	2153	5933	0,5	2354	6310	0,8	1800
Km 35_50		5679	0,8	1307	6537	1,3	964	5492	-0,1	842
Km 50_70		4726	0,2	1320	4541	-0,3	1205	4980	0,1	1307
Km 35_70		5052	0,5	1176	5282	0,3	954	5106	0,1	889
Кz Ям		4585	1,6	1362	495	-1,0	1277	2291	0,9	1591
Кz Ом		95	-0,9	1551	-4390	-1,4	2237	-1245	0,6	2390
Кz Бм		1410	-0,1	3076	-5838	-1,0	3504	-1582	1,2	2791
Kz 35_50		2794	-0,9	1201	1961	-1,6	1332	4593	1,2	1743
Kz 50_70		1880	1,0	1574	-1571	-0,5	1654	-1953	-0,2	1740
Kz 35_70		2306	1,0	658	-28	-1,3	1012	718	0,5	1178
Кт Ям		-3429	0,0	780	-5803	-1,0	885	-4754	0,8	985
Кт Ом		231	2,1	1284	-2820	0,8	1167	-5148	-0,9	1164
Кт Бм	1000 гПа	789	1,0	1101	506	0,8	1110	-1159	-0,7	952
Km 35_50	1000 1114	-1018	0,6	436	-2013	-0,1	559	-2385	-0,3	691
Km 50_70		-247	1,9	424	-611	1,3	482	-1715	-0,9	521
Km 35_70		-558	1,6	356	-1155	0,8	409	-1949	-0,6	533
Кт Ям		4680	0,0	1067	7894	1,0	1205	6489	-0,8	1340
Кт Ом		3725	-0,7	1414	5260	-0,6	1775	8482	0,9	1825
Кт Бм		1794	-0,9	1376	1526	-1,3	1362	3546	0,3	1387
Km 35_50		3169	0,6	483	3857	0,1	527	3599	-1,0	686
Km 50_70		2551	-1,4	534	2900	-1,0	679	4149	0,8	647
Km 35_70	сание инлексов	2757	-0,8	431	3250	-0,7	538	3838	0,0	574

^{*} Описание индексов приведено в разделе «Терминология».

Берингово море

Интенсивность зональных течений в среднем слое тропосферы над акваторией Берингова моря была близка к норме (Kz составляет 0,2STD), западно-восточный перенос оставался преобладающим (значение индекса положительное). У поверхности земли перенос воздуха с востока на запад был ослаблен (Kz составляет 1,2STD, значение индекса отрицательное), но остался преобладающим.

Межширотный обмен над Беринговым морем в средней тропосфере был интенсивнее обычного (|Km| составляет 0,8STD) за счет усиления воздушных течений с юга (Km в относительных единицах составляет 0,9STD). У земли межширотный обмен мало отличался от

^{**} Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1971–2000 гг.

нормы (|Km| составляет 0,3STD), но интенсивность течений воздуха с севера незначительно превышала норму в ущерб течений с юга (Кm в относительных единицах составляет -0,7STD). Перенос с юга преобладал в среднем слое (значение индекса положительное), в нижней тропосфере преобладал перенос воздуха с севера (значение индекса отрицательное).

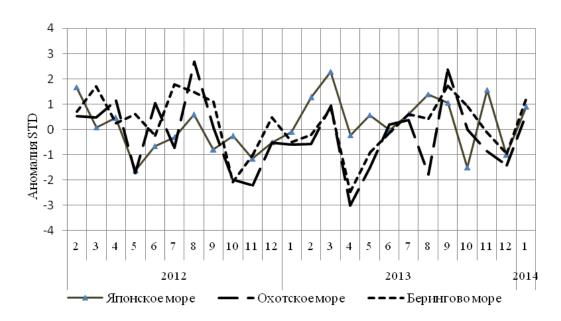


Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Kz) в нижней тропосфере над дальневосточными морями

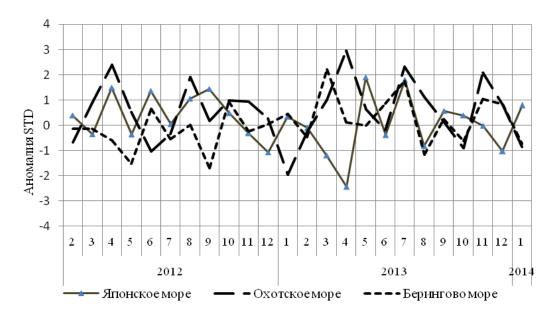


Рис. 1-9 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кm) в нижней тропосфере над дальневосточными морями

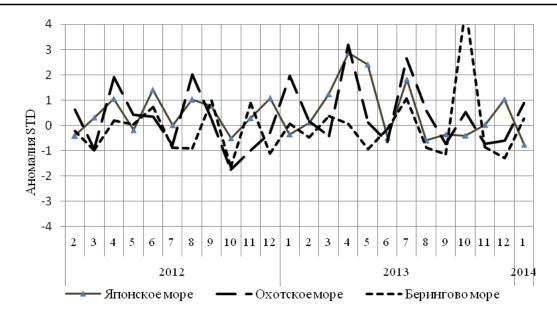


Рис. 1-10 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Km|) в нижней тропосфере над дальневосточными морями

1.4 Аналог погоды на январь 2014 г. для Дальнего Востока

Аналог подбирается для усредненных за месяц полей давления воздуха у земли и геопотенциала H_{500} для II е. с. р. Объективным критерием подбора является коэффициент корреляции. Учитывается динамика процесса: используются поля за предшествующие месяцы с весовыми коэффициентами.

Дата аналога для января 2014 г. – январь 1990 г.



Рис. 1-11 Среднее поле H_{500} (изолинии) и его аномалия (изополосы) в феврале 1990 г. (дам)

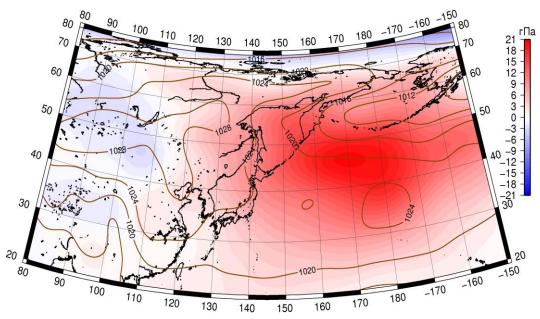


Рис. 1-12 Среднее поле давления у поверхности земли (изолинии) и его аномалия (изополосы) в феврале 1990 г. (гПа)

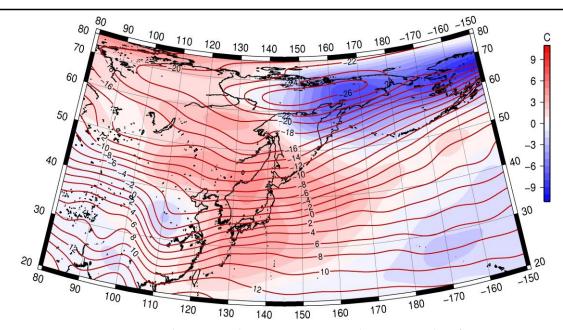


Рис. 1-13 Среднее поле T_{850} (изолинии) и его аномалия (изополосы) в феврале 1990 г. (°С)