1 Метеорологические условия

1.1 Синоптический обзор

Кинематические карты, рис. 1-1-1-2, 1-4 содержат положение циклонов (красный цвет) и антициклонов (синий цвет) на 00 BCB каждых суток декады и траектории их смещения. За барическими объектами закреплен номер, по которому из ниже следующих таблиц можно определить точные координаты и давление в центре объекта в срок 00 BCB.

I декада июля 2019 г.

Японское море

В начале декады над северной половиной моря располагалась малоградиентная область пониженного давления с частными циклонами с давлением в центрах 1000 гПа. Область низкого давления двигалась в восточном направлении со скоростью 30 км/ч, 2 июля через Японские острова перемещалась в Тихий океан, не вызвав существенного ухудшения погоды.

К середине декады на акваторию моря распространился гребень охотоморского антициклона, который сохранялся практически до конца декады.

Скорость ветра в течение декады не превышала 5-10~м/c, волнение моря – до 1~м, местами отмечались туманы.

Охотское море

Над большей частью Охотского моря до середины декады превалировало поле высокого давления. Малоподвижный антициклон с давлением в центре 1016 гПа располагался над северной половиной акватории, 7 июля через северные Курилы переместился в Тихий океан.

На фоне повышенного давления над южными Курилами 2–3 июля проследовал неглубокий циклон с давлением в центре 1008 гПа, не вызвав ухудшения погодных условий.

8 июля над центральной частью моря под высотным центром углубился циклон, давление в его центре составляло $1010~\mathrm{г}$ Па. Смещаясь на юго-восток со скоростью $30~\mathrm{кm/v}$, $9~\mathrm{числа}$ через северные Курилы он переместился в Тихий океан.

В этот период, 8 июля, на севере акватории образовался антициклон с давлением в центре 1016 гПа. Постепенно усиливаясь, антициклон медленно двигался в южном направлении, в самом конце декады располагался над южной частью моря с давлением в центре 1020 гПа.

Скорость ветра в течение декады не превышала 5-10 м/с, волнение моря — не более 1,0-1,5 м, местами отмечались густые туманы.

Берингово море

В начале декады на восточную половину моря с Тихого океана вышел двуцентровый циклон с давлением $1000~\rm r\Pi a$ и $1002~\rm r\Pi a$. Двигаясь на север со скоростью $40-50~\rm km/ч$, 3 июля он переместился на Чукотку, вызвав над восточной половиной усиление ветра до $15-20~\rm m/c$, высоту волн $3-4~\rm m$, дожди.

На западе моря в течение всей декады погодные условия определялись областью высокого давления с ядром вблизи Командорских островов мощностью 1018 гПа.

4 июля на восточную часть моря распространился гребень антициклона, который располагался над Аляской. 5 числа он охватил всю акваторию Берингова моря. Западное ядро разрушилось и вошло в циркуляцию гребня аляскинского антициклона.

8 числа к Алеутским островам с юга подошёл обширный циклон. 9 июля он вышел на юг моря с давлением в центр 1000 гПа. Превратившись в высокое малоподвижное барическое

образование, циклон, постепенно заполнялся, просуществовал здесь до конца декады, не вызывая существенного ухудшения погодных условий.

На протяжении всей декады местами отмечались туманы.

Северо-западная часть Тихого океана

В первой декаде июля через северо-западную часть Тихого океана прошли 4 циклона.

1 июля на центральную часть района с Японского моря вышел циклон с давлением в центре 1000 гПа. В течение суток он быстро, со скоростью 80 км/ч, смещался на северо-восток, 2 июля находился на северо-востоке района, где замедлил движение и начал заполняться. З июля заполнившись до 1008 гПа, циклон переместился в западное полушарие. С этим процессом в северо-западной части Тихого океана отмечались усиление ветра до 18–23 м/с, волнение моря 2–3 м, небольшие дожди.

1 июля на юго-востоке о. Хонсю на волне полярного фронта образовался циклон с давлением в центре 1004 гПа. В течение суток без изменения давления со скоростью 50–60 км/ч циклон перемещался на восток-северо-восток, 2 июня находился над центральной частью района, повернул на восток и начал заполняться, 4 июня вышел за пределы района в восточный сектор Тихого океана. Над центральной частью района циклон определил усиление ветра до 15 м/с, волнение моря 2–3 м, небольшие дожди.

4 июля у восточного побережья о. Хонсю образовался волновой циклон с давлением в центре 1004 гПа. В течение трех суток циклон, углубляясь, со скоростью 30–40 км/ч перемещался на восток-северо-восток, 7 июля находился на северо-востоке района глубиной 992 гПа. В течение следующих суток со скоростью 40 км/ч он смещался на восток, начал заполняться, 8 июля переместился в западное полушарие. Циклон вызвал усиление ветра 18–23 м/с, волнение моря 3–4 м, дожди.

6 июля на юго-западе акватории, у побережья Японских островов Кюсю и Сикоку, образовался еще один волновой циклон с давлением 996 гПа. В течение суток со скоростью 30 км/ч он перемещался на северо-восток, 7 июля подошёл к восточному побережью о. Хонсю, повернул на восток, замедлил движение и начал заполняться. В дальнейшем, в течение двух суток циклон, заполняясь, со скоростью 10–20 км/ч перемещался на восток, 10 июля находился над центральной частью района глубиной 1004 гПа. На юго-западе района циклон вызвал усиление ветра 15–20 м/с, волнение моря 2–3 м, интенсивные дожди.

Антициклоническая деятельность отмечалась 2–6 июля на юге района в области ядра с давлением в центре 1018 гПа. 6 июля оно переместилось на юг и разрушилось.

7 июля в район северных Курил с Охотского моря вышел антициклон с давлением в центре 1020 гПа. В течение двух суток он, разрушаясь, медленно (со скоростью 20 км/ч) смещался на юго-восток, 9 июля на юго-востоке района разрушился.

В течение декады повсеместно наблюдались туманы, ухудшая видимость до 1000 м и менее.

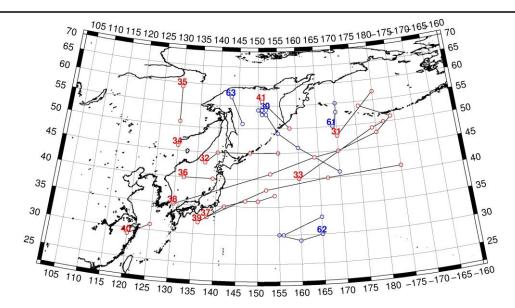


Рис. 1-1 Траектории движения циклонов и антициклонов в I декаде июля

		Циклоны	[Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление	
31	01.07.2019	48	170	1004	30	01.07.2019	54	152	1014	
	02.07.2019	57	180	1002		02.07.2019	54	151	1014	
32	01.07.2019	43	137	1000		03.07.2019	54	151	1014	
	02.07.2019	45	140	1004		04.07.2019	53	151	1014	
	03.07.2019	45	148	1008		05.07.2019	54	150	1016	
	04.07.2019	45	155	1012		06.07.2019	53	152	1016	
33	01.07.2019	40	160	1000		07.07.2019	49	155	1020	
	02.07.2019	49	179	1002		08.07.2019	46	160	1018	
	03.07.2019	50	182	1008		09.07.2019	41	170	1018	
34	01.07.2019	46	130	1000	61	03.07.2019	50	169	1014	
35	01.07.2019	59	130	1000		04.07.2019	53	170	1016	
	02.07.2019	51	130	1000		05.07.2019	53	170	1018	
36	01.07.2019	40	132	1000		06.07.2019	55	170	1018	
	02.07.2019	40	139	1004	62	02.07.2019	30	165	1018	
37	01.07.2019	33	138	1004		03.07.2019	29	160	1018	
	02.07.2019	38	152	1006		04.07.2019	30	155	1016	
	03.07.2019	40	167	1012		05.07.2019	30	156	1016	
	04.07.2019	41	185	1004		06.07.2019	33	165	1016	
38	04.07.2019	35	130	1004	63	09.07.2019	57	143	1018	
	05.07.2019	41	153	1000		10.07.2019	51	146	1020	
	06.07.2019	44	164	996						
	07.07.2019	45	170	992						
	08.07.2019	48	180	996						
	09.07.2019	51	184	1000						
	10.07.2019	54	176	1000						
39	06.07.2019	32	136	996						
	07.07.2019	35	142	998						

	Циклоны					Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
	08.07.2019	36	147	1000							
	09.07.2019	36	150	1004							
	10.07.2019	37	154	1004							
40	09.07.2019	29	120	1000							
	10.07.2019	31	125	998							
41	08.07.2019	56	151	1010							
	09.07.2019	50	158	1010							

II декада июля 2019 г.

Японское море

В самом начале декады на южную половину Японского моря с Желтого моря вышел циклон с давлением в центре 998 гПа. Он двигался на северо-восток со скоростью 20-30 км/ч, над северной частью моря превратился в малоподвижное барическое образование, заполнился 14 июля. Циклон вызвал ветер 8-13 м/с, волнение моря 1-2 м, дожди.

Вслед за циклоном до конца декады установилось поле высокого давления, ориентированное с Охотского моря и с северо-западной части Тихого океана.

В течение декады над морем сохранялись туманы.

Охотское море

Над Охотским морем в течение декады преобладало поле высокого давления.

13 июля восточнее северного Сахалина образовалось ядро с давлением в центре 1016 гПа. Оно медленно, со скоростью 10–20 км/ч, перемещалось на юго-восток, постепенно усиливаясь, 16 июля через центральные Курилы вышло в Тихий океан с давлением 1020 гПа.

В конце декады при приближении области низкого давления к западному побережью над акваторией моря увеличились барические градиенты, что определило усиление ветра до 9-14~м/c, волнение возросло до 1-2~m.

В течение декады сохранялись густые туманы.

Берингово море

В первой половине декады над морем преобладало поле пониженного давления.

Циклон, располагавшийся в конце первой декады на юге акватории, 11 числа переместился в Тихий океан, затем начал смещаться в восточном направлении вдоль Алеутской гряды, постепенно заполняясь. 15 числа он заполнился.

13 июля на северо-западе моря образовалось ядро с давлением в центре 1012 гПа. Оно разрушилось в течение суток. 15 числа на Алюторский залив с Чукотки вышел циклон с давлением в центре 1002 гПа. Смещаясь на юг со скоростью 30 км/ч и постепенно заполнялся, 16 числа он через Алеутскую гряду переместился в Тихий океан. Ветер и волнение моря были умеренные.

Во второй половине декады вблизи Алеутской гряды над акваторией океана хозяйничали антициклоны, усилившиеся в конце декады. Между ними и областью низкого давления над Чукоткой наблюдались напряженные барические градиенты. На акватории моря усилились ветры восточной четверти до 8–13 м/с, волнение выросло до 1–2 м.

В течение всей декады местами отмечались туманы.

Северо-западная часть Тихого океана

В начале декады, 11 июля, к юго-востоку от п-ова Камчатка располагался малоподвижный циклон с давлением в центре 998 гПа. В течение четырех суток, заполняясь, он медленно двигался на восток, 15 июля переместился в западное полушарие, заполнившись до 1008 гПа. На северовостоке района наблюдались усиление ветра до 15-18 м/с, волнение моря 1,5-2,5 м, небольшие дожди.

Над южной половиной акватории в течение декады располагался полярный фронт, на волнах которого образовывались циклоны, быстро смещавшиеся на восток-северо-восток. Эти волновые циклоны над южной половиной района определяли усиление ветра до 15–20 м/с, волнение моря 2–3 м, небольшие дожди. Всего прошло 5 волновых циклонов.

11 июля на юге района образовался волновой циклон с давлением в центре 1004 гПа. В течение трех суток, заполняясь, циклон со скоростью 40 км/ч перемещался на восток-северовосток, 14 июля заполнился до 1014 гПа и вышел в северо-восточный сектор Тихого океана за 180 меридиан. На юге района наблюдались усиление ветра 15–20 м/с, волнение моря 2–3 м, небольшие дожди.

Второй циклон глубиной 1006 гПа образовался 12 июля у юго-восточного побережья о. Хонсю. В течение суток слабо углублялся, со скоростью 30–40 км/ч перемещался на север-северовосток, 13 июля находился вблизи северного побережья о. Хонсю. В течение следующих суток циклон оставался малоподвижным, заполнился в этом же районе, не вызвав существенного ухудшения погодных условий.

Следующий циклон с давлением в центре 1008 гПа образовался 14 июля на юге района, в течение двух суток без развития быстро, со скоростью 50 км/ч, перемещался на восток-северовосток, 16 июля вышел за пределы района. Этот циклон также не вызвал существенного ухудшения погоды.

Еще один волновой циклон глубиной 1000 гПа образовался 13 июля над северной частью Восточно-Китайского моря, 14 июля приблизился к восточному побережью о. Хонсю. В течение суток циклон без изменения давления со скоростью 50 км/ч смещался на восток, 15 июля находился над центральной частью района. В течение следующих двух суток, заполняясь, со скоростью 40 км/ч перемещался на восток-северо-восток, 17 июля подошел к восточной границе района с давлением в центре 1012 гПа. 18 июля циклон вышел за пределы района. На юге акватории при прохождении циклона наблюдались усиление ветра 15–18 м/с, волнение моря 2–3 м, небольшие дожди.

Следующий волновой циклон с давлением в центре 1010 гПа образовался 19 июля у восточного побережья о. Хонсю. В течение суток, слабо углубляясь, со скоростью 30 км/ч он перемещался на северо-восток, 20 июля вышел в центральную часть района глубиной 1008 гПа. 19–20 июля на западе и центральной части района наблюдались усиление ветра до 15–18 м/с, волнение моря 2–3 м, небольшие дожди.

Про антициклоны. 12 июля на северо-западную часть акватории с Охотского моря сместился антициклон с давлением в центре 1014 гПа. До конца декады он медленно, со скоростью 10 км/ч, перемещался на восток и усиливался, 20 июля находился на северо-востоке района, давление в его центре составляло 1032 гПа.

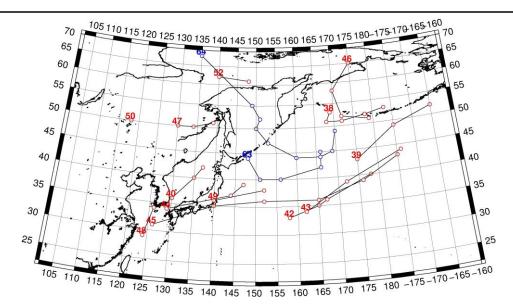


Рис. 1-2 Траектории движения циклонов и антициклонов во II декаде июля

		Циклоны	[Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление	
38	11.07.2019	53	169	998	63	11.07.2019	44	148	1018	
	12.07.2019	51	168	998		12.07.2019	40	151	1014	
	13.07.2019	51	172	1002		13.07.2019	40	156	1016	
	14.07.2019	52	178	1006		14.07.2019	42	166	1016	
	15.07.2019	53	183	1008		15.07.2019	45	166	1018	
39	11.07.2019	43	175	998		16.07.2019	44	166	1020	
	12.07.2019	49	185	998	64	12.07.2019	68	135	1012	
	13.07.2019	52	195	1000		13.07.2019	55	149	1014	
40	11.07.2019	36	130	1000		14.07.2019	52	151	1016	
	12.07.2019	40	135	998		15.07.2019	50	150	1018	
	13.07.2019	42	137	998		16.07.2019	47	153	1020	
	14.07.2019	42	137	1002		17.07.2019	44	160	1024	
42	11.07.2019	33	158	1004		18.07.2019	44	166	1026	
	12.07.2019	35	165	1006		19.07.2019	45	169	1030	
	13.07.2019	36	167	1012		20.07.2019	49	170	1032	
	14.07.2019	40	178	1014						
43	14.07.2019	34	162	1008						
	15.07.2019	39	172	1008						
	16.07.2019	44	186	1012						
44	12.07.2019	34	129	1006						
	13.07.2019	37	144	1002						
	14.07.2019	39	147	1002						
45	13.07.2019	31	126	1000						
	14.07.2019	35	140	1000						
	15.07.2019	36	152	1000						
	16.07.2019	36	165	1006						

		Циклоны	[Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление	
	17.07.2019	39	176	1012						
	18.07.2019	43	185	1018						
46	14.07.2019	65	175	1002						
	15.07.2019	58	170	1004						
	16.07.2019	52	172	1008						
	17.07.2019	51	179	1016						
47	17.07.2019	50	130	1004						
	18.07.2019	50	134	1002						
	19.07.2019	51	139	1002						
48	19.07.2019	29	124	985						
	20.07.2019	34	126	985						
49	19.07.2019	36	140	1010						
	20.07.2019	38	152	1008						
50	20.07.2019	50	118	994						
52	19.07.2019	62	140	1002						
	20.07.2019	61	148	1008						

III декада июля 2019 г.

Японское море

В самом начале декады, 21 июля, на западную часть акватории с Жёлтого моря вышел циклон тропического происхождения, бывший тайфун DANAS, с давлением в центре 998 гПа. Перемещаясь на восток, северо-восток со скоростью 20–30 км/ч, циклон вышел на север моря, где 23 числа заполнился. Максимальная скорость ветра в зоне циклона – 12–17 м/с, высота волн развивалась до 2–3 м, прошли сильные дожди.

Затем до конца декады над большей частью акватории наблюдалось малоградиентное поле пониженного, на юге моря установилось поле повышенного давления. Преобладали слабые ветер и волнение моря.

В течение всей декады отмечались туманы.

Охотское море

В начале декады вдоль северного побережья моря прошел неглубокий циклон с давлением в центре 1008 гПа, не вызвавший ухудшения погодных условий.

22 июля на северо-востоке акватории образовалось малоподвижное ядро с давлением в центре 1016 гПа. В течение суток оно разрушилось. На юге моря сохранялось влияние гребня тихоокеанского антициклона.

С приближением депрессии с Хабаровского края 23 числа ветер на западе акватории вблизи Сахалина поменялся на южный. 24 числа депрессия с давлением в центре 1002 гПа вышла на Охотское море. Смещаясь на восток со скоростью 30 км/ч, 25 числа она через северные Курилы переместилась в Тихий океан, вызвав на акватории моря ветер 8–13 м/с, волнение моря 1–2 м, небольшие дожди.

23 июля на северо-запад акватории с севера вышел антициклон с давлением в центре 1018 гПа. Со скоростью 10-20 км/ч он двигался на юго-восток, разрушился 27 июля над северными Курилами.

27 числа на юг акватории с Японского моря вышел неглубокий циклон. В последующие дни он перемещался на северо-восток со скоростью 30 км/ч, углублялся, 29 июля через южную Камчатку перевалил в северо-западную часть Тихого океана. Минимальное давление в центре циклона составило 992 гПа. Скорость ветра в Охотском море с этим процессом не превышала 8–13 м/с, волнение было в пределах 1–2 м, отмечались дожди.

Следующий циклон с давлением в центре 998 гПа проследовал по южной части моря 29–30 числа, не вызвав существенного ухудшения погоды.

В течение всей декады местами отмечались туманы.

Берингово море

В начале декады на Берингово море вышла ложбина обширного циклона, который перемещался над Чукоткой. Циклон постепенно заполнялся, 24 июля вышел на северную часть моря, заполнившись до 1004 гПа. В дальнейшем двигался на северо-восток со скоростью 30 км/ч, 26 числа находился в районе Берингова пролива с давлением в центре 992 гПа, обусловив в Беринговом море ветер 8–13 м/с, высоту волн 1–2м, небольшие дожди.

Следующий циклон вышел к Командорским островам с Охотского моря 29 июля. Перемещаясь по южной части моря в восточном направлении со скоростью 30 км/ч, 31 числа он находился над Бристольским заливом. Минимальное давление в центре циклона — 1000 гПа. Существенного усиление ветра на акватории моря с этим процессом не отмечалось.

В течение декады местами сохранялись туманы.

Северо-западная часть Тихого океана

В первой половине декады над южной частью района располагался малоподвижный заполняющийся циклон с давлением в центре 1002 гПа. На юге акватории он обусловил усиление ветра 15–20 м/с, волнение моря 3–4 м, дожди. Над северной частью района господствовал гребень тихоокеанского антициклона с давлением в центре 1026 гПа. 25 июля циклон заполнился и на всю акваторию северо-западной части Тихого океана распространился гребень.

26–28 июля через северную часть района проследовал неглубокий циклон с давлением в центре 1010–1012 гПа. Он вышел с акватории Охотского моря, не вызвал существенного ухудшения погодных условий.

26 июля на юго-запад акватории с юга вышел тропический шторм NARI глубиной 1000 гПа. В течение суток тропический шторм смещался на север со скоростью 25 км/ч, достиг максимальной глубины — 998 гПа, и начал заполняться. Максимальный ветер вблизи центра тропического шторма достигал 25 м/с, волнение моря развивалось до 3 м, отмечались сильные дожди. 27 июля тропический шторм NARI находился у юго-восточного побережья о. Хонсю с давлением в центре 1000 гПа. В течение следующих суток, заполняясь, со скоростью 20 км/ч перемещался на северо-восток, перешел в стадию тропической депрессии. Тропическая депрессия в течение двух суток продолжала заполняться, со скоростью 30–40 км/ч двигалась на восток, 29 июля заполнилась над центральной частью района.

29–30 июля по северу района с акватории Охотского моря со скоростью 30 км/ч на восток перемещался заполняющийся циклон с давлением в центре 998–1004 гПа. Он не вызвал существенного ухудшения погодных условий.

31 июля на север района с акватории Охотского моря вышел еще один циклон с давлением в центре 996 гПа. В зоне его действия отмечались усиление ветра до 15-20 м/с, волнение моря 2-3 м, небольшие дожди.

Во второй половине декады над юго-восточной частью района располагался ослабевающий гребень тихоокеанского антициклона, давление в его области составляло 1024–1018 гПа.

В течение всей декады над акваторией северо-западной части Тихого океана местами сохранялись туманы, ухудшающие видимость до 1000 м и менее.

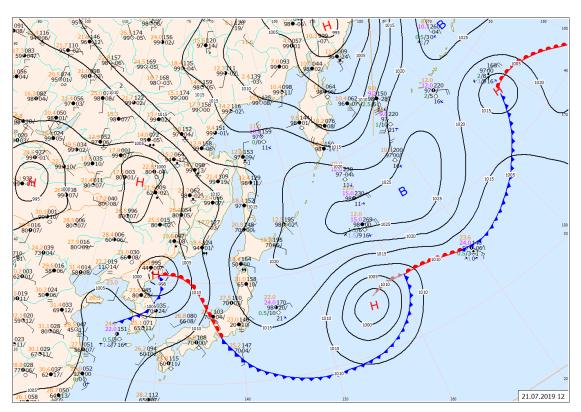


Рис. 1-3 Приземная карта за 12 ВСВ 21 июля 2019 г.

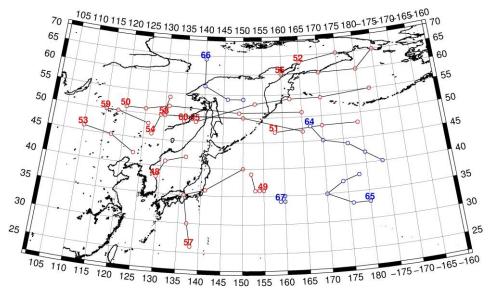


Рис. 1-4 Траектории движения циклонов и антициклонов в III декаде июля

Циклоны					Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер Дата Широта Долгота Да				Давление	
48	21.07.2019	38	129	998	64	21.07.2019	48	167	1026	
	22.07.2019	41	131	996	22.07.2019 45 170 1				1022	

	-	Циклоны				A	АНТИЦИКЛО	ны	
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление
	23.07.2019	42	136	1002		23.07.2019	44	176	1024
49	21.07.2019	36	155	1002		24.07.2019	42	180	1024
	22.07.2019	36	154	1002		25.07.2019	40	184	1024
	23.07.2019	36	153	1006	65	23.07.2019	33	180	1024
	24.07.2019	39	152	1008		24.07.2019	33	176	1024
50	21.07.2019	51	120	996		25.07.2019	35	170	1024
	22.07.2019	51	125	996		26.07.2019	37	174	1024
	23.07.2019	52	131	994		27.07.2019	38	178	1022
	24.07.2019	51	149	1002	66	23.07.2019	64	140	1020
	25.07.2019	51	165	1008		24.07.2019	57	140	1018
51	26.07.2019	47	158	1010		25.07.2019	54	146	1016
	27.07.2019	48	170	1010		26.07.2019	54	150	1016
	28.07.2019	48	179	1012	67	27.07.2019	34	159	1020
52	21.07.2019	63	165	1004		28.07.2019	34	160	1020
	22.07.2019	65	175	996		29.07.2019	35	160	1018
53	23.07.2019	46	110	996					
	24.07.2019	45	117	998					
	25.07.2019	42	123	1000					
54	24.07.2019	46	127	996					
	25.07.2019	50	129	1000					
	26.07.2019	51	130	1000					
	27.07.2019	54	131	1000					
55	27.07.2019	49	138	1000					
	28.07.2019	53	153	992					
	29.07.2019	54	162	998					
	30.07.2019	54	170	1002					
	31.07.2019	55	183	1004					
56	23.07.2019	60	160	1006					
	24.07.2019	60	170	1006					
	25.07.2019	60	180	996					
	26.07.2019	65	185	994					
57	25.07.2019	26	138	1006					
	26.07.2019	30	137	1000					
	27.07.2019	35	136	1000					
	28.07.2019	36	141	1008					
	29.07.2019	40	150	1010					
58	29.07.2019	50	130	996					
	30.07.2019	50	150	1000					
	31.07.2019	47	165	996					
59	29.07.2019	50	115	996					
	30.07.2019	50	118	992					
	31.07.2019	48	126	996					
60	31.07.2019	49	135	996					

1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных анализа NCEP/NCAR и приведены ниже (рис. 1-5–1-7). Анализ термобарических полей сделан на базе средних за месяц карт геопотенциала на стандартном изобарическом уровне 500 гПа, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне 850 гПа. Аномалии рассчитаны относительно средних многолетних значений за период 1981–2010 гг.

Японское море

В июле продолжался прогрев полушария, геопотенциальные высоты изобарических поверхностей устойчиво возрастали. Глобальная барическая напряженность между тропиками и полярными районами ослабевала. Барическое поле средней тропосферы над регионом окончательно перестроилось на летний тип циркуляции. Над побережьем в зоне умеренных широт сформировался барический гребень, как и положено в летние месяцы. Берингово море, также по сезону, было занято ложбиной. Над Сибирью и североамериканским континентом получили аномальное развитие гребни, аномалии геопотенциальных высот в зоне их действия достигали 4—6 дам. Необычно низкое давление установилось над Восточной Арктикой, что привело к обострению арктической фронтальной зоны и значительным отрицательным (до -7 дам) аномалиям над этим районом. Большая часть тропической зоны занята, как и положено, поясом повышенного давления с уже привычными положительными аномалиями геопотенциальных высот около 1—2 дам. Над акваторией Японского моря в течение месяца в средней тропосфере преобладал западно-восточный перенос воздуха, имеющий слабый наклон от юго-запада к северовостоку. Геопотенциальные высоты поля Н₅₀₀ над северной, большей, частью акватории выше нормы на 1—2 дам, на юге моря — ниже обычного примерно на 1 дам.

У земной поверхности в июле депрессия над бассейном Амура занимает традиционное положение, развита в пределах нормы; азиатская депрессия слабее относительно среднего многолетнего состояния. Тихоокеанский максимум на 2–3 гПа слабее нормы, при этом его отроги, ориентированные на Охотское море и юго-восток Берингова моря мощнее обычного (в их зоне аномалии положительные до 1–2 гПа). Значительно отклоняется от среднего многолетнего поле атмосферного давления над Арктикой. Восточная Арктика занята депрессией с отрицательными аномалиями давления до -5 гПа. Западная Арктика наоборот, под воздействием антициклона, что определило положительные аномалии атмосферного давления над этим районом. Японское море находилось в пограничном положении между материковыми депрессиями и морскими антициклонами, фон и распределение давления близки к норме (аномалии не превышают 1 гПа).

Температура воздуха на уровне H_{850} (нижняя тропосфера) над Японским морем распределена от $+17\,^{\circ}$ С на юге до $+12\,^{\circ}$ С на севере акватории. За месяц она повысилась на $3-8\,^{\circ}$ С. Это состояние близко к норме, отклонения не превышают $1\,^{\circ}$ С.

Охотское море

В средней тропосфере в июле над акваторией Охотского моря располагалась передняя часть высотного гребня, что характерно для июля. Аномалии геопотенциальных высот поля H_{500} над большей частью акватории положительные до 1-2 дам – гребень мощнее, тропосфера теплее обычного. Лишь над северными районами моря аномалии переходят в отрицательные, до -1 дам.

У земной поверхности большая часть акватории Охотского моря испытывала влияние поля повышенного давления. Фон атмосферного давления близок к норме, на юге акватории превышает норму на 1-2 г Π а.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем в среднем за месяц распределена от +13 °C на юге до +9 °C на северо-востоке моря. За месяц температура повысилась на 5–8 °C. Это состояние близко к норме, отклонения от нормы меньше 1 °C.

Берингово море

В средней тропосфере над западной частью Берингова моря устойчиво располагалась высотная ложбина, что соответствует среднему многолетнему распределению. Аномалии геопотенциальных высот поля H_{500} над этим районом отрицательные до -1 дам. Восточная часть акватории испытывала влияние высотного гребня. Его активное развитие определило формирование положительных аномалий геопотенциала до +6 дам (повышенный запас тропосферного тепла).

У земной поверхности акватория моря находилась в пограничном положении между полем пониженного давления над Чукоткой и прилегающими районами Арктики и тихоокеанским антициклоном, отрог которого вторгся на юго-восток акватории. Фон атмосферного давления ниже нормы над северо-западными районами и на столько же превышает норму над юго-восточными районами моря.

Температура воздуха на уровне H_{850} над морем в среднем за месяц относительно равномерно распределена в пределах 6–9 °C. За месяц она повысилась на 3–5 °C. Это состояние превышает норму на 1–3 °C для восточной, большей, части акватории, на западе моря температура близка к норме.

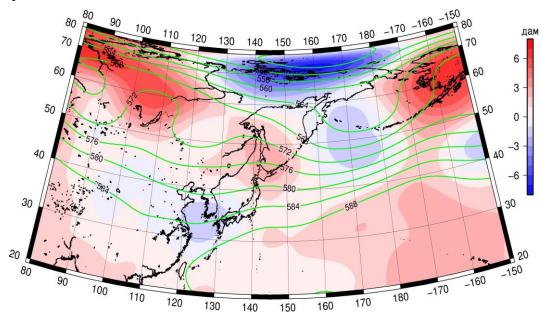


Рис. 1-5 Среднее поле H_{500} (изогипсы) и его аномалия (изополосы) в июле 2019 г. (дам)

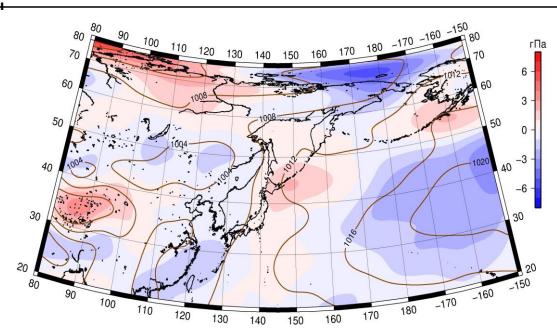


Рис. 1-6 Среднее поле давления у поверхности земли (изобары) и его аномалия (изополосы) в июле $2019 \, \Gamma$. ($\Gamma\Pi a$)

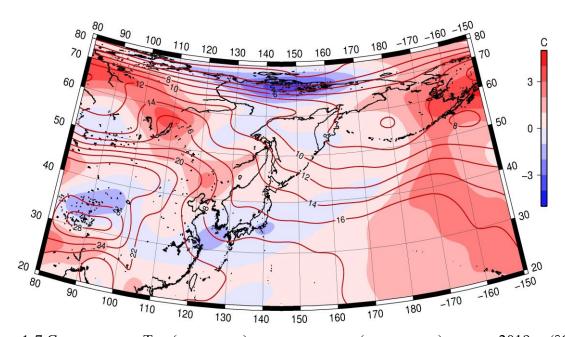


Рис. 1-7 Среднее поле T_{850} (изотермы) и его аномалия (изополосы) в июле 2019 г. (°С)

1.3 Глобальные и региональные индексы циркуляции атмосферы

1.3.1 Зональный и меридиональный перенос воздуха над II е.с.р.

Характеристика основных воздушных течений в средней и нижней тропосфере за июль 2019 г. сделана на основе индексов атмосферной циркуляции, приведенных ниже в таблице и на рис. 1-8-1-10. В данном разделе принята следующая терминология для характеристики индексов: норма $-\pm 0,3$ STD относительно нормы; незначительное отклонение от нормы $-\pm (0,4-0,7)$ STD; значительное отклонение от нормы $-\ge 2$ STD относительно нормы. Аномалии рассчитаны относительно средних многолетних значений (нормы) за период 1981-2010 гг.

Японское море

В июле интенсивность западно-восточного переноса воздуха в средней тропосфере над Японским морем была незначительно ниже нормы, в нижнем слое близка к средним многолетним показателям (Кz составляет -0,7STD и 0,2STD в среднем и нижнем слоях тропосферы, соответственно). В зоне умеренных широт над II е. с. р. интенсивность зональных течений была близка к норме (Кz соответственно составляет -0,2STD и -0,3STD в среднем и нижнем слоях тропосферы). Во всем слое преобладающим оставался перенос воздуха с запада на восток (значения индексов Кz положительные).

Межширотный обмен в средней тропосфере над Японским морем был незначительно слабее обычного (|Km| составляет -0,7STD), что обеспечено ослаблением северной составляющей переноса (Кm составляет -0,5STD); в нижнем слое межширотный обмен превышал норму (|Km| составляет 1,2STD), что определялось усилением южной составляющей обмена (Кm составляет 1,2STD). Во всем слое преобладал перенос воздуха с юга (значения индексов положительные).

Над умеренной зоной 35–50° с. ш. II е. с. р. в среднем за месяц интенсивность межширотного обмена в среднем слое тропосферы была близка к норме (|Km| составляет -0,3STD), многолетний баланс между меридиональными составляющими был нарушен в пользу южной компоненты переноса (Кm составляет 0,7STD). В нижней тропосфере межширотный обмен был слабым (|Km| составляет -1,1STD), что определялось деградацией южной составляющей обмена (Кm составляет -1,4STD). Во всем слое тропосферы преобладал перенос воздуха с юга (значения индексов положительные).

Охотское море

В тропосфере над Охотским морем преобладал перенос воздуха с запада на восток (значения зональных индексов положительные), его интенсивность незначительно превышала норму (Кz составляет 0,3STD и 0,5STD в среднем и нижнем слоях тропосферы, соответственно). Для зоны 50–70° с. ш. над II е. с. р. зональные индексы также положительны (в нижнем слое значение индекса невелико по абсолютному значению), что свидетельствует о преобладании переноса воздуха с запада на восток; интенсивность зональных течений незначительно превышала норму (Кz соответственно составляет 0,6STD и 0,3STD для среднего и нижнего слоев тропосферы).

Межширотный обмен над акваторией Охотского моря во всём слое тропосферы был близок к норме (|Кm| составляет 0,1STD и -0,1STD для средней и нижней тропосферы, соответственно); многолетний баланс между меридиональными составляющими незначительно нарушен лишь в средней тропосфере, в нижнем слое близок к норме (Кm равен -0,5STD и 0,0STD для среднего и нижнего слоев тропосферы, соответственно). В среднем за месяц в средней тропосфере преобладали движения воздуха с севера (значение индекса отрицательное), в нижнем слое – с юга на север (значение индекса положительное).

В зоне $50-70^{\circ}$ с. ш. над II е. с. р. межширотный обмен в средней тропосфере был сильнее обычного (|Km| составляет 1,2STD), в нижнем слое близок к средним многолетним показателям (|Km| составляет 0,0STD); многолетний баланс между меридиональными компонентами близок к норме во всем слое (Km соответственно составляет 0,3STD и 0,0STD в среднем и нижнем слоях тропосферы). В среднем за месяц в средней тропосфере незначительно преобладали движения воздуха с севера (значение индекса отрицательное), в нижнем слое — с юга на север (значение индекса положительное).

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

11 4	Уровень		Май			Июнь			Июль	
Индекс*	(высота)	значение	ASTD**	STD**	значение	ASTD**	STD**	значение	ASTD**	STD**
Кz Ям		14884	-0.2	3428	9175	-0.2	2632	7781	-0.7	2519
Кz Ом		6095	-0.7	2463	4163	-0.3	2529	6596	0.3	2365
Кz Бм		2626	-1.1	2969	129	-1.2	3172	4659	-0.6	2603
Kz 35_50		15662	-0.7	2112	12334	-0.6	1068	10184	-0.2	1303
Kz 50_70		5244	-0.4	1504	1366	-3.3	1103	5798	0.6	1452
Kz 35_70		9901	-1.2	714	6174	-4.5	537	7755	0.7	702
Кт Ям		82	0.8	1479	-2045	-1.3	1370	932	0.5	1051
Кт Ом		1137	1.1	1795	-350	1.0	1387	-1887	-0.5	1246
Кт Бм	500 allo	-2323	-1.6	1305	847	1.3	1155	862	1.4	726
Km 35_50	500 гПа	-1528	-1.7	414	-697	-0.8	379	351	0.7	169
Km 50_70		-429	-0.1	341	-94	0.9	356	-184	0.3	232
Km 35_70		-855	-1.4	243	-320	0.1	299	54	0.5	173
Кт Ям		2666	-0.1	1290	3014	0.9	1017	1271	-0.7	838
Кт Ом		3244	0.1	1396	3556	0.0	1698	3130	0.1	1384
Кт Бм		6498	2.0	1521	1950	-1.1	1368	3406	0.4	1193
Km 35_50		4284	1.4	657	2950	0.3	486	2035	-0.3	645
Km 50_70		3764	1.0	667	2987	-0.4	764	3363	1.2	596
Km 35_70		3925	1.4	528	2962	-0.2	568	2782	0.6	539
Кz Ям		6259	2.3	1188	624	-1.0	1091	1994	0.2	1195
Кz Ом		357	-0.3	824	-627	-2.0	838	1868	0.5	1210
Кz Бм		-632	-0.6	1358	-1463	-1.7	1345	1883	0.0	1330
Kz 35_50		2906	0.0	1117	826	-1.1	926	1685	-0.3	772
Kz 50_70		-1413	-0.6	873	-969	-1.1	649	11	0.3	613
Kz 35_70		575	-0.4	527	-95	-1.5	512	788	0.1	480
Кт Ям		1529	1.2	563	1176	-1.3	612	2807	1.2	548
Кт Ом		2163	2.0	745	1121	0.5	535	1159	0.0	487
Кт Бм	1000 гПа	-874	-1.0	652	406	0.3	702	890	0.3	297
Km 35_50	1000 1118	-206	-2.3	234	662	-0.7	265	1016	-1.4	178
Km 50_70		-341	-0.8	209	513	1.9	182	395	0.0	123
Km 35_70]	-254	-2.1	159	590	0.6	185	667	-1.0	120
Кт Ям		2445	1.7	518	1839	-1.2	775	3847	1.2	729
Кт Ом		3494	2.4	695	2049	0.0	608	2113	-0.1	576
Кт Бм		2597	0.5	908	1617	-0.2	844	1600	-0.4	518
Km 35_50		2734	2.3	299	2106	-0.8	359	2443	-1.1	254
Km 50_70	1	2434	1.4	334	1806	0.0	234	1709	-0.1	233
Km 35_70		2482	1.9	278	1940	-0.4	214	2018	-0.8	176

^{*} Описание индексов приведено в разделе «Терминология».

^{**} Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1981–2010 гг.

Берингово море

В течение месяца во всем слое тропосферы над Беринговым морем преобладал перенос воздуха с запада на восток (значения зональных индексов положительные), его интенсивность была слабее обычного в среднем слое (Kz составляет -0,6STD) и близка к норме в нижней тропосфере (Kz составляет 0,0STD).

Интенсивность межширотного обмена в средней тропосфере над акваторией моря незначительно превышала норму (|Km| составляет 0,4STD), в нижнем слое наоборот, была незначительно ниже нормы (|Km| составляет -0,4STD). Многолетний баланс между меридиональными составляющими в средней тропосфере нарушен в пользу южной составляющей межширотного обмена (Кm составляет 1,4STD), у поверхности земли был близок к климатическому (Кm составляет 0,3STD). Во всем слое сложилось преобладание переноса воздуха с юга (значения индексов положительные).

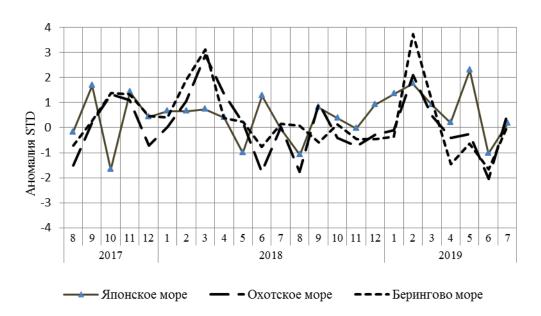


Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Kz) в нижней тропосфере над дальневосточными морями

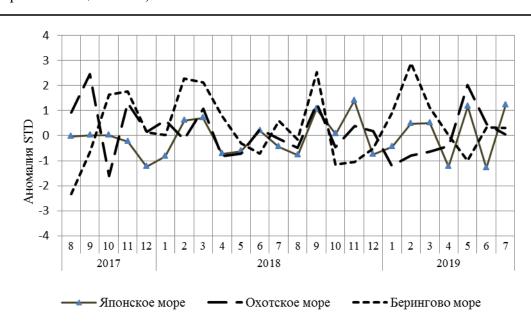


Рис. 1-9 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кт) в нижней тропосфере над дальневосточными морями

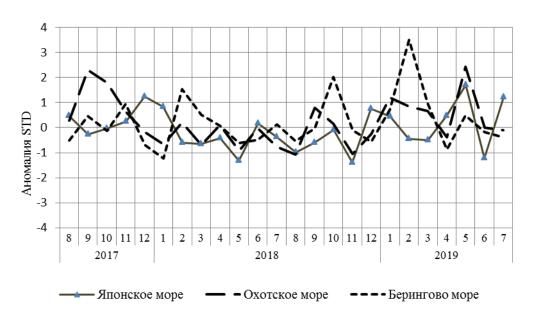


Рис. 1-10 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Km|) в нижней тропосфере над дальневосточными морями

1.3.1 Индекс засушливости Педя S для станций Приморского и Хабаровского краёв 1

Приморский край	Апрель	Май	Июнь	Июль
Анучино	0.7	3.2	0.4	1.7
Астраханка	2.6	-1.1	-1.1	-0.1
Владивосток	2.8	0.3	0.6	-0.4
Дальнереченск	2.3	-0.3	-1.9	1.3
Пограничный	2.1	1.5	-0.4	0.7
Посьет	3.4	2.2	0.8	0.3
Преображение	2.6	0.7	0.6	-1.1
Рощино	1.9	1.4	-0.9	0.8
Рудная Пристань	1.1	0.8	0.0	-1.5
Сосуново	1.9	0.1	-0.7	-0.3
Терней	1.9	0.2	-0.9	-0.1
Тимирязевский	2.2	1.5	0.1	0.5
Турий Рог	2.7	-1.6	-2.0	0.8
Хабаровский край	Апрель	Май	Июнь	Июль
Аян	1.5	-5.4	-1.4	0.2
Гвасюги	2.2	1.5	-4.3	0.2
Екатерино-Никольское	1.9	-2.6	-3.2	-0.8
Им. Полины Осипенко	2.1	-3.7	-2.8	0.5
Комсомольск-на-Амуре	2.1	-1.7	-0.8	-0.7
Нелькан	-0.6	-0.9	-1.5	
Николаевск-на-Амуре	2.0	1.1	-2.3	1.1
Охотск	1.3	-2.0	1.0	-0.3
Сковородино	1.4	-0.4	2.2	-1.3
Софийский Прииск	0.3	-0.6	-2.8	-0.3
Сутур	1.5	-2.6	-1.8	-0.5
Тумнин	2.6	2.5	-0.7	0.7
Урми	2.2	-5.1	-2.0	0.2
Усть-Нюкжа	1.5	0.2	2.3	1.5
Хабаровск_	2.7	-1.0	-1.9	-0.5
Хуларин	1.3	-2.8	-2.3	0.0
Чекунда	-0.1	-1.8	-1.9	-0.5
Чумикан	1.9	-2.2	-2.2	-1.1

Положительные значения индекса соответствуют засушливым условиям, отрицательные – условиям достаточного (избыточного) увлажнения при пониженном фоне температур. Для месячных значений S принято считать, что

- если 1<S<2, то засуха слабая, если -1>S>-2, то увлажнение слабое;
- если 2<S<3, то засуха умеренная, если -2>S>-3, то увлажнение умеренное;
- если S>3, то засуха сильная, если S<-3, то увлажнение сильное.

-

¹ См. раздел «Терминология бюллетеня».

1.4 Аналог погоды на июль 2019 г. для Дальнего Востока

Аналог подбирается для усредненных за месяц полей давления воздуха у земли и геопотенциала H_{500} для II е. с. р. Объективным критерием подбора является коэффициент корреляции. Учитывается динамика процесса: используются поля за предшествующие месяцы с весовыми коэффициентами.

Дата аналога для июля 2019 г. – июль 1980 г.

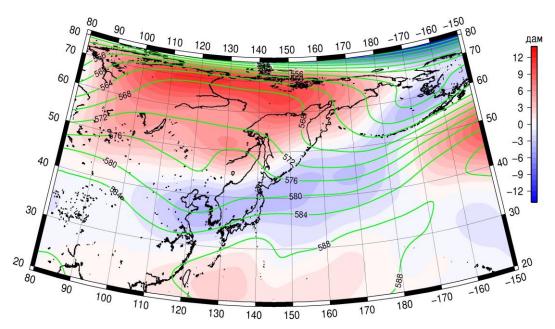


Рис. 1-11 Среднее поле H_{500} (изолинии) и его аномалия (изополосы) в августе 1980 г. (дам)

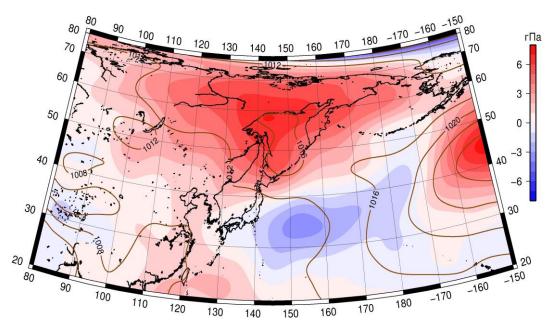


Рис. 1-12 Среднее поле давления у поверхности земли (изолинии) и его аномалия (изополосы) в августе 1980 г. (гПа)

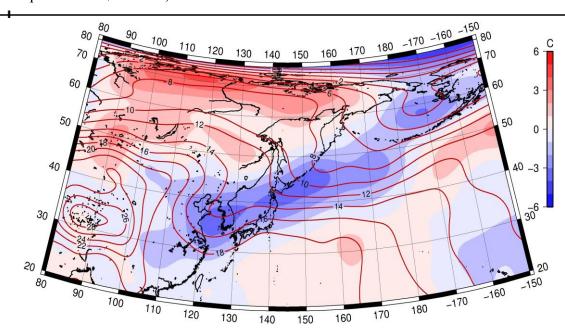


Рис. 1-13 Среднее поле T_{850} (изолинии) и его аномалия (изополосы) в августе 1980 г. (°С)