1 Метеорологические условия

1.1 Синоптический обзор

Кинематические карты, приведенные на рис. 1-1, 1-3 и 1-4, содержат положение циклонов (красный цвет) и антициклонов (синий цвет) за 00 ВСВ каждых суток декады и траектории их перемещения. За барическими объектами закреплен номер, по которому из ниже следующих таблиц можно определить точные координаты и давление в центре объекта в срок 00 ВСВ.

I декада марта 2024 г.

Японское море

В самом начале первой декады у южного побережья Приморского края образовался циклон с давлением в центре 1012 гПа. Медленно двигаясь на северо-восток, он углублялся, 2 марта находился над проливом Лаперуза с давлением в центре 992 гПа. На акватории Японского моря циклон обусловил усиление ветра до 15–20 м/с, волнение до 4–5 м.

2 марта на западную часть моря с северной Кореи вышел неглубокий циклон с давлением в центре 1010 гПа. Без развития со скоростью 60–70 км/ч он проследовал над центральной частью акватории на восток, 3 марта перевалил через Японию в Тихий океан. На южной периферии циклона ветер был сильный, до 12–17 м/с, волнение – до 3 м.

В период с 4 по 6 марта погодные условия определялись преимущественно полем повышенного давления, 7 числа по центральной части акватории проследовало ядро мощностью 1016 гПа.

7 марта на южную часть моря с районов Кореи переместился неглубокий циклон с давлением в центре 1014 гПа. Он двигался на восток со скоростью $20{\text -}30$ км/ч, 9 марта был над о. Хонсю с давлением в центре 1004 гПа. В тылу циклона наблюдалось усиление северного ветра до $10{\text -}15$ м/с, волнение развивалось до $2{\text -}3$ м.

Охотское море

1 марта под воздействием тыловой части циклона, развивающегося у восточного побережья Камчатки, на акватории Охотского моря сохранялись северные ветры до $13-18\,$ м/с, волнение на свободной ото льда акватории развивалось до $3-4\,$ м.

2 марта с Японского моря на южную часть Охотского моря вышел циклон с давлением в центре 992 гПа. Двигаясь на восток, северо-восток со скоростью 30 км/ч, он пересек акваторию моря, 3 марта через центральные острова Курильской гряды переместился в Тихий океан с давлением в центре 988 гПа. В тылу циклона ветер оставался сильным, до 12–17 м/с, волнение – до 3 м.

В дальнейшем преобладала зимняя муссонная циркуляция. 6-7 марта она перебивалась частным малоподвижным циклоном с давлением в центре 1008-1010 гПа, образовавшимся на северо-востоке акватории. Северные ветры не превышали 8-13 м/с, волнение – не более 2 м.

Берингово море

В начале декады у восточного побережья Камчатки располагался циклон с давлением в центре 976 гПа. Он вышел в этот район в конце февраля, обуславливая штормовой ветер до 20–25 м/с, волнение до 6–8 м. Наиболее сильные ветры наблюдались в северо-восточном секторе циклона, на границе с антициклоном, развивающимся над Чукотским морем. Заполняясь, циклон оставался на месте до 4 марта.

3 марта на южную часть моря вышел циклон с давлением в центре $982\ {\rm г\Pi a}$. Двигался на северо-восток со скоростью $10-20\ {\rm кm/ч}$ без развития, начал заполняться лишь в конце суток 5

марта, 7 числа переместился на Аляску. Ветер над морем оставался сильным, до $15-20\,\mathrm{m/c}$, волнение – до $4-5\,\mathrm{m}$.

В середине декады, 6-7 марта, южнее Алеутской гряды перемещалась депрессия с давлением в центре 982-984 гПа, обуславливая на юге моря ветер до 10-13 м/с, волнение до 3-4 м.

8 марта на юго-западную часть моря начал оказывать влияние глубокий тихоокеанский циклон. Минимальное давление в его центре отмечалось в срок 06 ВСВ 8 марта, составляло 952 гПа. 9 марта циклон вышел на западные острова Алеутской гряды с давлением в центре 964 гПа. Превратившись в высокое малоподвижное образование, он начал быстро заполняться. В конце декады давление в его центре составляло 994 гПа. Скорость ветра с этим процессом достигала 20–25 м/с, волнение развивалось до 7–8 м.

Северо-западная часть Тихого океана

Циклон, который образовался в конце февраля южнее Японии, двигался на северо-восток со скоростью $70~\rm km/ч$, $3~\rm mapta$ через центральную часть Алеутской гряды переместился в Берингово море с давлением в центре $980~\rm r\Pi a$. Циклон обусловил усиление ветра до $20-25~\rm m/c$, волнение до $6-7~\rm m$.

3 марта с Охотского моря через центральные Курилы на акваторию района вышел циклон с давлением в центре 992 гПа. Без развития со скоростью 60 км/ч он перемещался на восток. Заполнился 4 марта. В зоне циклона ветер был сильный до 12–17 м/с, волнение – до 5–6 м.

Циклон, который вышел с Японского моря с давлением в центре 1008 гПа 3 марта, двигался над акваторией района на восток, северо-восток со скоростью 50 км/ч. Минимальное давление в его центре отмечалось 5 марта, составляло 982 гПа. Скорость ветра в зоне циклона возрастала до 20-25 м/с, волнение развивалось до 6-7 м. Циклон заполнился вблизи Алеутских островов 7 марта.

3 марта в районе с координатами 34° с. ш., 151° в. д. образовался циклон с давлением в центре 1014 гПа. Двигался на восток, северо-восток со скоростью 70-80 км/ч без существенного развития, 4 марта по 42-й параллели с давлением в центре 1008 гПа переместился в западное полушарие. В зоне циклона ветер возрастал до 12-17 м/с, волнение развивалось до 3-4 м.

5 марта вблизи восточного побережья Азии на 32° с. ш. образовался волновой циклон с давлением в центре 1008 гПа. Активно углубляясь, он двигался на восток, затем северо-восток со скоростью 60 км/ч, 8 числа находился у западной части Алеутской гряды с давлением в центре 952 гПа. Скорость ветра в зоне циклона достигала штормовой силы, 23-28 м/с, волнение развивалось до 8-10 м.

Следующий циклон с давлением 1008 гПа возник южнее Японии 7 марта. Он также двигался на северо-восток со скоростью 60 км/ч, углублялся, 10 числа вблизи центральной части Алеутской гряды переместился в западное полушарие с давлением в центре 982 гПа. Минимальное давление в его центре отмечалось 8–9 марта, составляло 972 гПа. Ветер в зоне действия циклона достигал 20–25 м/с, волнение – до 7–8 м.

9 марта с Японского моря переместился циклон с давлением в центре 1004 гПа. Двигаясь на восток со скоростью 60 км/ч, он углублялся. В конце декады находился в районе с координатами 39° с. ш., 160° в. д. с давлением в центре 998 гПа. 10 марта ветер в зоне циклона достигал 15-20 м/с, волнение развивалось до 5-6 м.

В течение декады поле высокого давления располагалось на юге района вдоль 30-й параллели. Оно пополнялось ядрами, которые отделялись от азиатского антициклона. Так в конце февраля в район с координатами 30° с. ш., 150° в. д. переместилось ядро с давлением в центре 1026 гПа. Без развития оно продолжало двигаться на восток, 3 марта по 31-й параллели покинуло

восточное полушарие. Другое ядро переместилось в северо-западную часть океана по 30-й параллели 3 числа с давлением 1024 гПа. Двигалось на восток со скоростью 40–50 км/ч, 6 марта начало усиливаться, 7 марта покинуло восточное полушарие с давлением в центре 1030 гПа.

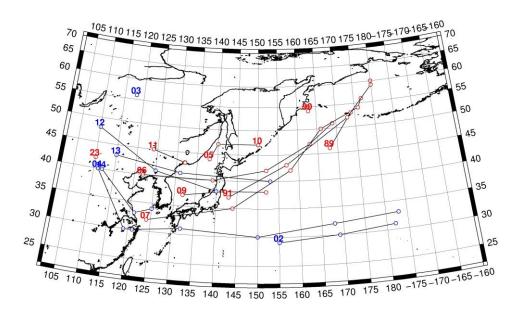


Рис. 1-1 Траектории движения циклонов и антициклонов в I декаде марта

		Циклоны	I		Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
89	01.03.2024	46	168	980	02	01.03.2024	29	155	1024		
	02.03.2024	53	174	990		02.03.2024	30	169	1024		
91	01.03.2024	37	143	990		03.03.2024	31	182	1028		
	02.03.2024	43	157	982	03	01.03.2024	56	118	1032		
	03.03.2024	52	173	982	04	01.03.2024	40	111	1038		
	04.03.2024	59	180	982		02.03.2024	30	119	1030		
	05.03.2024	60	180	982		03.03.2024	30	121	1024		
90	01.03.2024	54	163	976		04.03.2024	31	132	1024		
	02.03.2024	55	163	988		05.03.2024	30	150	1024		
	03.03.2024	55	162	986		06.03.2024	32	168	1026		
	04.03.2024	55	163	986		07.03.2024	33	183	1030		
05	01.03.2024	44	138	1004	12	03.03.2024	48	110	1028		
	02.03.2024	47	140	990		04.03.2024	41	125	1024		
	03.03.2024	47	150	988		05.03.2024	38	140	1024		
06	02.03.2024	40	122	1016	13	06.03.2024	43	115	1032		
	03.03.2024	40	139	1010		07.03.2024	41	131	1022		
	04.03.2024	42	152	1000		08.03.2024	40	153	1018		
	05.03.2024	47	163	982	14	08.03.2024	40	112	1032		
	06.03.2024	51	169	984		09.03.2024	33	121	1028		
07	05.03.2024	32	124	1006		10.03.2024	34	125	1030		
	06.03.2024	35	144	996							
	07.03.2024	42	158	980							

		Циклоны	I		Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление	
	08.03.2024	50	166	956						
	09.03.2024	54	176	976						
	10.03.2024	56	177	990						
09	08.03.2024	37	132	1008						
	09.03.2024	38	142	1004						
	10.03.2024	38	152	1002						
10	10.03.2024	47	150	1014						
11	07.03.2024	45	124	1018						
	08.03.2024	43	132	1012						
12	10.03.2024	42	110	1020						

II декада марта 2024 г.

Японское море

В начале второй декады через Японское море проследовала ложбина, а по южным островам Японии — циклон, тыловая часть которого определяла северный ветер до $8-13\,$ м/с, волнение развивалось до $2\,$ м.

В середине декады, 15 марта, через центральную часть моря со скоростью 70 км/ч перемещался углубляющийся циклон с давлением в центре $1002~\mathrm{г}\Pi a$. Он обусловил усиление ветра до $10-15~\mathrm{m/c}$, волнение $2-3~\mathrm{m}$. Вслед за циклоном $16~\mathrm{числa}$ по центральной части акватории со скоростью $40~\mathrm{km/v}$ проследовал антициклон с давлением в центре $1026~\mathrm{г}\Pi a$.

17 марта с Китая вышел следующий развивающийся циклон с давлением в центре 1000 гПа. Углубляясь, он перемещался по центральной части моря на восток со скоростью 40 км/ч, 18 числа был над Хоккайдо с давлением в центре 992 гПа. Скорость ветра на акватории моря с этим процессом составляла 15–20 м/с, волнение развивалось до 3–4 м.

19 марта на южную часть акватории вышел циклон с давлением в центре $1010 \, г\Pi a$. 20 числа, углубившись до $1000 \, г\Pi a$, через Японские острова он перевалил в Тихий океан. На юге моря сохранялся сильный ветер до $10{\text -}15 \, \text{м/c}$, волнение до $3{\text -}4 \, \text{м}$.

Охотское море

В начале декады, 12 марта, с Татарского пролива на акваторию Охотского моря вышел неглубокий циклон с давлением в центре 1006 гПа. Двигаясь на восток со скоростью 20 км/ч, циклон заполнялся. 13 числа прекратил свое существование, не вызвав существенного усиления ветра и волн.

С 13 марта погодные условия формировались под воздействием глубокого циклона, который перемещался над Тихим океаном вблизи Курильских островов. 15 числа через южную Камчатку циклон перевалил в Охотское море. В дальнейшем медленно двигался на запад, северозапад, 18 числа прекратил свое существование на северо-западе акватории. Циклон обусловил штормовые условия: ветер до 20–25 м/с, волнение на свободной ото льда акватории до 6–7 м.

 $18-20\,$ марта ещё один циклон проследовал вблизи Курильской гряды с тихоокеанской стороны, вызвав усиление ветра на юге моря до $15-20\,$ м/с, высоту волн до $4-5\,$ м.

Берингово море

В начале декады вблизи восточного побережья Камчатки располагался циклон с давлением в центре 994—996 гПа. 12 числа через северную часть полуострова он переместился в Охотское море. На северной периферии циклона ветер был сильный, до 13–18 м/с, волнение — до 4 м.

13 марта с Чукотки на акваторию моря распространился гребень антициклона. Он сохранял свое влияние на восточную и северную части моря до 18 числа.

С 14 марта на западе моря погодные условия формировались под воздействием глубокого циклона. 14 числа он находился над акваторией Тихого океана вблизи юго-восточного побережья Камчатки с давлением в центре 950 гПа. Скорость ветра над Беринговым морем достигала 23–28 м/с, волнение развивалось до 7–8 м. 15 марта, заполняясь, циклон начал переваливать через Камчатку в Охотское море, но его влияние на погодные условия западной части Берингова моря сохранялось до 16 марта.

В середине декады ветер ослабел до 10-15 м/с, волнение улеглось до 3-4 м.

19 марта на восточную часть Алеутской гряды вышел южный циклон глубиной 986 гПа. 20 марта он двигался по акватории моря на север со скоростью 30–40 км/ч, вышел в район Анадырского залива с давлением в центре 982 гПа. Скорость ветра в зоне циклона составляла 13–18 м/с, волнение развивалось до 3–4 м.

Северо-западная часть Тихого океана

В начале второй декады над северо-западной частью Тихого океана располагались два центра низкого давления. На северо-востоке района продолжал развиваться циклон, который вышел на акваторию района в конце первой декады. Углубляясь, он двигался на восток, северовосток со скоростью 40-50 км/ч, 12 числа по 48-й параллели переместился в западное полушарие с давлением в центре 972 гПа. Циклон вызвал штормовые условия: ветер до 23-28 м/с, волнение до 7-8 м.

Второй циклон располагался у юго-восточного побережья Камчатки с давлением в центре 990 гПа. Он медленно перемещался на восток, заполнился 12 марта. В юго-западном секторе циклона ветер достигал 13–18 м/с, волнение – до 3–4 м.

11 марта от южных островов Японии по западной траектории перемещался антициклон с давлением в центре 1028 гПа. Он двигался на восток со скоростью 50-60 км/ч, 14 марта по 31-й параллели покинул восточное полушарие. Максимальное давление в его центре -1030 гПа.

11 марта южнее Японии на полярном фронте образовался циклон с давлением в центре 1014 гПа. Двигаясь на северо-восток со скоростью 60 км/ч, циклон интенсивно углублялся. 16 числа через южную часть полуострова Камчатка перевалил в Охотское море. Минимальное давление в его центре отмечалось 14 марта, составляло 950 гПа. Максимальная скорость ветра в зоне циклона -25-30 м/с, высота волн – до 10-12 м.

14 марта с Японского моря вышел циклон с давлением в центре 1008 гПа. Он углублялся, двигался на восток, северо-восток со скоростью 60 км/ч. Минимальное давление в его центре отмечалось 16 марта, составляло 988 гПа. 17 числа циклон заполнился вблизи центральной части Алеутской гряды. Ветер в зоне циклона достигал 15-18 м/с, высота волн – до 4-5 м.

15 числа со стороны Японского моря вышел следующий циклон с давлением в центре $1000 \, \mathrm{r\Pi}a$. Двигаясь на восток, северо-восток со скоростью $50 \, \mathrm{кm/v}$, он углублялся, $18 \, \mathrm{мартa}$ по 45-й параллели покинул восточное полушарие с давлением в центре $980 \, \mathrm{r\Pi}a$. Минимальное давление в его центре $-972 \, \mathrm{r\Pi}a$. Циклон вызвал усиление ветра до $25-30 \, \mathrm{m/c}$, волнение до $8-10 \, \mathrm{m}$.

16 марта с Японского моря вышло ядро мощностью 1022 гПа. Без развития оно двигалось на восток со скоростью 50 км/ч. 19 марта по 31-й параллели переместилось в западное полушарие.

Следующий циклон вышел с Японского моря 18 марта глубиной 988 гПа. Смещаясь на восток, северо-восток со скоростью 30 км/ч, он углублялся. В конце декады находился в районе с координатами 45° с. ш., 166° в. д. с давлением в центре 986 гПа. Минимальное давление в центре циклона составляло 976 гПа. Скорость ветра в зоне циклона возрастала до 20-25 м/с, волнение развивалось до 7-8 м.

Циклон с давлением в центре 990 гПа, который тоже переместился с Японского моря 20 марта, двигался на северо-восток со скоростью 40 км/ч, углублялся. В конце суток находился в районе с координатами 37° с. ш., 144° в. д. с давлением в центре 984 гПа. Ветер в зоне циклона усилился до 20-25 м/с, волнение возросло до 5-6 м.

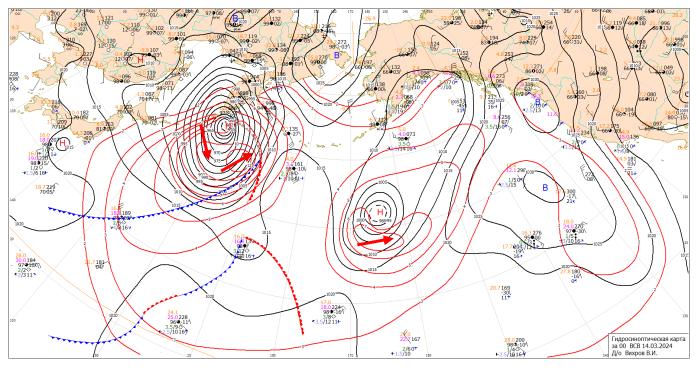


Рис. 1-2 Приземная карта за 00 ВСВ 14 марта 2024 г.

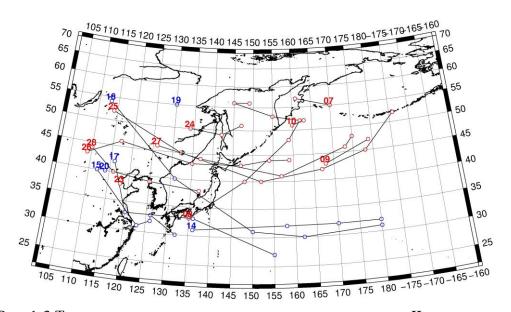


Рис. 1-3 Траектории движения циклонов и антициклонов во II декаде марта

		Циклоны	[Антициклоны							
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление			
07	11.03.2024	55	170	996	14	11.03.2024	31	136	1028			
	12.03.2024	57	161	1000		12.03.2024	32	158	1028			
08	12.03.2024	33	135	1002		13.03.2024	32	170	1030			
	13.03.2024	40	148	972		14.03.2024	32	180	1026			
	14.03.2024	48	159	952	15	12.03.2024	40	112	1030			
	15.03.2024	52	162	968		13.03.2024	31	123	1026			
	16.03.2024	53	155	988		14.03.2024	32	126	1024			
	17.03.2024	56	145	1002		15.03.2024	33	126	1026			
	18.03.2024	56	149	1010		16.03.2024	30	132	1022			
09	11.03.2024	43	168	990	16	15.03.2024	54	113	1032			
	12.03.2024	47	179	974		16.03.2024	40	131	1026			
10	11.03.2024	51	160	990		17.03.2024	31	150	1022			
	12.03.2024	52	163	996		18.03.2024	30	162	1018			
	11.03.2024	38	118	1016		19.03.2024	31	180	1020			
24	11.03.2024	50	134	1010	17	17.03.2024	42	116	1032			
	12.03.2024	49	142	1008		18.03.2024	33	120	1026			
	13.03.2024	51	147	1004		19.03.2024	33	136	1020			
25	14.03.2024	52	114	1008		20.03.2024	27	155	1014			
	15.03.2024	45	132	1004	19	20.03.2024	55	130	1024			
	16.03.2024	40	152	992	20	20.03.2024	40	114	1030			
	17.03.2024	42	167	972								
	18.03.2024	45	178	976								
	19.03.2024	52	186	986								
26	15.03.2024	43	109	1006								
	16.03.2024	46	117	1006								
	17.03.2024	43	135	1006								
	18.03.2024	43	147	988								
	19.03.2024	44	154	978								
	20.03.2024	44	159	980								
27	13.03.2024	46	126	1010								
	14.03.2024	44	137	1008								
	15.03.2024	41	157	1004								
	16.03.2024	46	173	988								
	17.03.2024	48	175	996								
28	17.03.2024	44	110	1028								
	18.03.2024	40	116	1022								
	19.03.2024	39	125	1014								
	20.03.2024	38	137	1000								

+

III декада марта 2024 г.

Японское море

В начале третьей декады над Японским морем проследовало ядро с давлением в центре $1024~\rm r\Pi a.~23$ марта с Кореи вышел циклон глубиной $1008~\rm r\Pi a.$ Смещаясь на юго-восток со скоростью $50~\rm km/ч$ без существенного изменения давления, в конце суток он перевалил через Японию в Тихий океан. В передней части циклона ветер усиливался до $15-18~\rm m/c$, волнение возрастало до $2-3~\rm m.$

В период 23–24 марта по северной части моря перемещалась ложбина северного циклона, затем вплоть до 27 числа установилось поле высокого давления с ядром с давлением в центре 1026 гПа над южной частью акватории.

28 марта на южную часть моря вышел циклон с давлением в центре 1000 гПа. Он проследовал на северо-восток со скоростью 50 км/ч, 30 числа был над Татарским проливом с давлением в центре 990 гПа, вызвал усиление ветра до 9-14 м/с, волнение до 2 м.

Охотское море

В начале декады, 21–23 марта, над Охотским морем наблюдалось поле высокого давления.

24 марта на западную часть акватории с Татарского пролива вышел циклон с давлением в центре 1000 гПа. Двигался на восток, юго-восток со скоростью 20 км/ч, 26 числа через Курилы переместился в Тихий океан с давлением в центре 996 гПа, не вызвав существенного усиления ветра и волн. Скорость ветра на акватории моря не превышала 8–13 м/с, волнение – не более 2 м.

В период 27–29 марта над морем проследовал гребень от южного антициклона. Давление в центре антициклона составляло 1026–1028 гПа, он перемещался на восток со скоростью 20 км/ч южнее акватории моря. В конце декады погодные условия определялись глубоким малоподвижным циклоном. 31 марта он вышел на западную часть моря, в район северного Сахалина, с давлением в центре 986 гПа. Скорость ветра на акватории моря с этим процессом достигала 17–22 м/с, волнение на свободной ото льда акватории развивалось до 4–5 м.

Берингово море

В начале декады над центральной частью акватории располагалась многоцентровая депрессия с давлением в центрах 988-990 гПа. На её восточной периферии ветер был сильный 15-20 м/с, волнение – до 3 м. 23 марта депрессия заполнилась.

С 23 числа на восточную половину моря начал оказывать влияние ещё один циклон, который перемещался южнее Алеутской гряды. 24 марта у точки окклюзии этого циклона выделился ещё один центр. Последний вскоре вышел на крайнюю восточную часть акватории с давлением в центре 976 гПа. Ветер на акватории моря усилился до $15-20\,\mathrm{m/c}$, волнение возросло до $3-4\,\mathrm{m}$.

26 марта на северо-восток акватории с Аляски переместился циклон с давлением в центре 990 гПа. В западном секторе циклона северо-западный ветер усилился до 13–18 м/с, волнение сдерживалось ледяным покровом, не превышало 2 м. В течение 27–28 марта циклон заполнялся, оставаясь малоподвижным.

29 марта на восточную часть акватории с юга вышел циклон с давлением в центре 980 гПа. Двигаясь на север, северо-восток со скоростью 50 км/ч, 31 числа он переместился на Аляску с давлением в центре 988 гПа. Вызвал усиление ветра до 15-20 м/с, волнение до 3-4 м.

Над западной частью моря в конце декады располагался гребень тихоокеанского антициклона.

Северо-западная часть Тихого океана

Циклон, который в конце второй декады находился в районе с координатами 45° с. ш., 166° в. д. с давлением в центре 986 гПа, заполняясь, продолжал двигаться на восток, 21 марта по 50-й параллели покинул восточное полушарие с давлением в центре 994 гПа. Сильный ветер до 12–17 м/с сохранялся лишь в южном секторе циклона.

Второй циклон, который 20 марта переместился на акваторию района с Японского моря, двигался на северо-восток со скоростью 40 км/ч, 23 числа по 47-й параллели перешел в западное полушарие с давлением в центре 976 гПа. Минимальное давление в его центре отмечалось 21 марта, составляло 970 гПа. Циклон обусловил усиление ветра до 25-30 м/с, волнение до 8-10 м.

- 21 марта на акваторию района переместились два антициклона. Первый через Японское море скатился с северо-восточного Китая. Второй перемещался с востока вдоль 30-й параллели. 22 марта они объединились в один вихрь с давлением в центре 1024 гПа. В дальнейшем антициклон двигался на восток со скоростью 50–60 км/ч, 26 марта по 31-й параллели покинул восточное полушарие с давлением в центре 1028 гПа.
- 23 марта с Японского моря вышел неглубокий циклон с давлением в центре 1012 гПа. Двигаясь на восток со скоростью 30 км/ч, 27 числа по 46-й параллели он переместился в западное полушарие с давлением в центре 996 гПа. 26–27 марта в восточном, юго-восточном секторах циклона ветер усиливался до 15–18 м/с, волнение развивалось до 3–4 м.
- 25 числа на полярном фронте вблизи юго-восточного побережья Японии образовался циклон с давлением в центре 1012 гПа. Двигаясь на восток, северо-восток через сутки он заполнился. Второй волновой циклон он тоже образовался на волне полярного фронта южнее Японии 26 марта получил развитие. Двигался на восток, северо-восток со скоростью 70-80 км/ч. Циклон обусловил усиление ветра до 15-20 м/с, волнение до 5-6 м. 28 марта по 47-й параллели он переместился в западное полушарие с давлением в центре 982 гПа
- 26 числа с Охотского моря в северо-западную часть Тихого океана вышла депрессия с давлением в центре 996 гПа. Она медленно двигалась на восток, заполнялась, 28 марта окончательно исчезла с карт погоды. Ветер в зоне депрессии 26–27 марта был в пределах 12–17 м/с, волнение не более 3 м.
- 28 марта с Японского моря на акваторию района вышел антициклон с давлением в центре 1026 гПа. Двигался в восточном направлении со скоростью 40 км/ч, 31 марта вблизи 38-й параллели покинул восточное полушарие с давлением в центре 1034 гПа.
- 31 марта с Японского моря переместился неглубокий циклон с давлением в центре 1006 гПа. Он быстро двигался на северо-восток, в конце суток приблизился к м. Лопатка с давлением в центре 996 гПа. В восточном секторе циклона ветер был сильный, до 15–20 м/с, волнение развивалось до 3–4 м.

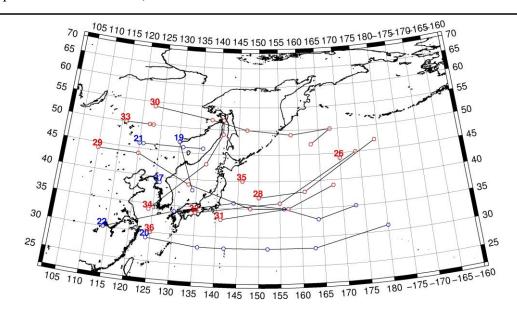


Рис. 1-4 Траектории движения циклонов и антициклонов в III декаде марта

		Циклоны	İ		Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
26	21.03.2024	44	170	990	19	21.03.2024	47	130	1022		
28	21.03.2024	37	150	970		22.03.2024	38	134	1024		
	22.03.2024	38	161	978	20	21.03.2024	29	124	1024		
	23.03.2024	47	179	976		22.03.2024	28	136	1022		
29	21.03.2024	44	110	1002		23.03.2024	28	142	1026		
	22.03.2024	44	120	1002		24.03.2024	28	152	1028		
	23.03.2024	39	133	1010		25.03.2024	28	163	1026		
	24.03.2024	35	148	1014		26.03.2024	31	180	1028		
	25.03.2024	35	157	1016	21	24.03.2024	46	120	1032		
	26.03.2024	39	168	1008		25.03.2024	46	121	1028		
30	23.03.2024	54	123	1004		26.03.2024	46	131	1024		
	24.03.2024	52	138	1000		27.03.2024	46	136	1024		
	25.03.2024	50	147	996	22	26.03.2024	30	114	1026		
	26.03.2024	49	158	996		27.03.2024	34	130	1026		
	27.03.2024	50	168	992		28.03.2024	36	144	1026		
	28.03.2024	47	163	998		29.03.2024	35	156	1030		
31	25.03.2024	33	141	1012		30.03.2024	33	164	1032		
	26.03.2024	35	157	1008		31.03.2024	35	173	1032		
32	26.03.2024	34	135	1008	37	31.03.2024	39	126	1016		
	27.03.2024	36	155	990							
	28.03.2024	45	174	984							
33	27.03.2024	50	116	998							
	28.03.2024	50	122	982							
	29.03.2024	50	123	990							
34	28.03.2024	34	124	1008							
	29.03.2024	43	137	996	_	_					

		Циклоны	I		Антициклоны					
Номер	р Дата Широта Долгота Давление				Номер	Дата	Широта	Долгота	Давление	
	30.03.2024	49	141	990						
	31.03.2024	52	141	986						
35	31.03.2024	40	146	1006						
36	31.03.2024	30	125	1004						

1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных реанализа NCEP/NCAR, приведены ниже на рис. 1-5-1-7. Анализ термобарических полей выполнен на базе средних за месяц карт барической топографии для стандартного изобарического уровня $500\ \Gamma\Pi a$, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне $850\ \Gamma\Pi a$. Аномалии рассчитаны относительно средних многолетних значений за период $1981-2010\ \Gamma\Gamma$.

Региональный обзор

Особенностью распределения барического поля средней тропосферы в марте являлась позимнему глубокая депрессия над арктическим побережьем материка между бассейнами Енисея и Лены. В зоне её влияния геопотенциальные высоты поверхности H_{500} были ниже нормы на 3–13 дам. Зимняя дальневосточная ложбина была хорошо выражена, глубже по отношению к состоянию в феврале и к норме (её южная периферия в области отрицательных аномалий геопотенциальных высот H_{500} до -2 дам). Высотные гребни над Азией и северо-восточной частью Тихого океана — обширны, термически обеспечены: над Центральной Азией аномалии геопотенциальных высот H_{500} достигали +3 дам, над северо-востоком океана — +9 дам. Восточный тихоокеанский гребень, вероятно, обеспечил и аномальное развитие барического гребня над крайним северо-востоком Азии (большая часть Магаданской области, Камчатка заняты положительными аномалиями геопотенциальных высот H_{500} до +4 дам). Высотная фронтальная зона в среднем над регионом занимала традиционное положение, была умеренно напряженной (рис. 1-5).

Над большей частью Восточной Азии и северо-западной частью Тихого океана доминировали процессы циклогенеза. Устойчивое депрессионное поле наблюдалось над бассейнами Оби и Енисея вплоть до левобережья Лены. Аномалии атмосферного давления над этими районами ниже нормы на 4–8 гПа. Азиатский антициклон был слабым, его мощность ниже климатической на 3–4 гПа. Значительно деградированы и его основные отроги, северо-восточный и юго-восточный. Атмосферное давление в области ленско-колымского отрога (северо-восточного) ниже нормы на 3–5 гПа. Алеутская депрессия была развита в пределах нормы, но обширнее обычного и смещена на юго-восток относительно климатического положения. Активнее обычного циклогенез отмечался на её восточной периферии, где аномалии атмосферного давления от -2 до -3 гПа. Тихоокеанский субтропический максимум был хорошо развит, его мощность превышала норму на 4–5 гПа, при этом он оставался преимущественно в западном полушарии. Его отрог, ориентированный на запад, вторгался далеко в северо-западную тропическую часть океана, поддерживая здесь положительные аномалии атмосферного давления до +1...+2 гПа (рис. 1-6).

Японское море

В средней тропосфере над Японским морем сохранялся устойчивый западно-восточный перенос воздуха, со слабым наклоном от северо-запада к юго-востоку. Воздушная масса над большей частью акватории была незначительно холоднее нормы; аномалии геопотенциальных высот изобарической поверхности H_{500} слабые отрицательные до -1 дам.

У земной поверхности над акваторией моря наблюдалось преимущественно поле пониженного давления. Аномалии атмосферного давления были распределены от -1 до -3 гПа.

Температура воздуха на уровне H_{850} (нижняя тропосфера) над морем была распределена от +1 °C на юге до -12 °C на севере. Для большей части акватории это состояние выше нормы примерно на 1 °C. За месяц температура воздуха над южной частью моря повысилась на 1–2 °C, над северной – на 3–7 °C.

Охотское море

В средней тропосфере над акваторией моря располагалось малоградиентное депрессионное поле, что не противоречит сезонному распределению давления. При этом воздушная масса над большей частью акватории была теплее нормы — геопотенциальные высоты поверхности H_{500} выше нормы на 1-4 дам. Лишь на юге было незначительно холоднее — аномалии геопотенциальных высот отрицательные — около -1 дам.

У земной поверхности Охотское море находилось в поле пониженного атмосферного давления, на восточной периферии алеутской депрессии. Фон атмосферного давления над морем ниже нормы на 2–4 г Π а.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от -9 °C на юге до -12...-14 °C на севере акватории. Это состояние превышает норму на 1–4 °C, максимальные отклонения от нормы сформировались у северного побережья. За месяц температура воздуха над большей частью акватории повысилась на 6–10 °C, на крайнем юге – на 3–5 °C.

Берингово море

В средней тропосфере западная часть Берингова моря находилась под воздействием поля повышенного давления, в зоне положительных аномалий геопотенциальных высот изобарической поверхности H_{500} , достигающих +4 дам. Восточная, северо-восточная часть акватории – в поле низкого давления, депрессионного характера, занята отрицательными аномалиями высот H_{500} до -2 дам.

У поверхности земли акватория моря чаще всего находилась под влиянием северной периферии алеутской депрессии. Фон атмосферного давления ниже нормы на 1–3 гПа.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от -6 °C на юго-востоке акватории до -14...-15 °C на севере у побережья Чукотки. Для западной части акватории это состояние превышает норму на 1–3 °C, для восточной — преимущественно ниже нормы на 1 °C. За месяц температура воздуха над морем повысилась на 1–2 °C.

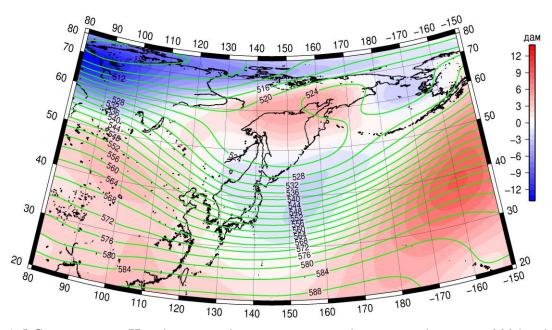


Рис. 1-5 Среднее поле H_{500} (изогипсы) и его аномалии (изополосы) в марте 2024 г. (дам)

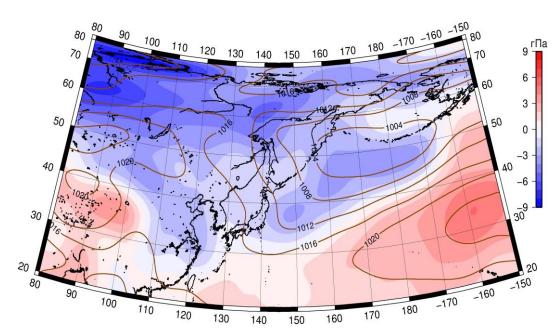


Рис. 1-6 Среднее поле атмосферного давления у поверхности земли (изобары) и его аномалии (изополосы) в марте 2024 г. (гПа)

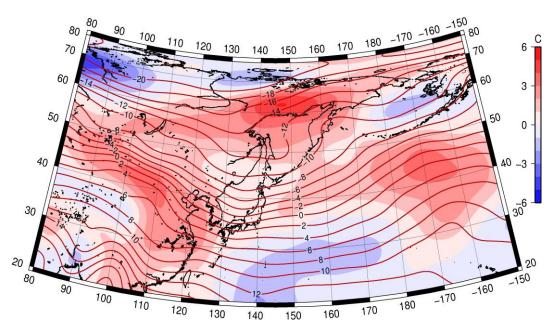


Рис. 1-7 Среднее поле T_{850} (изотермы) и его аномалии (изополосы) в марте 2024 г. (°С)

1.3 Региональные индексы циркуляции атмосферы

1.3.1 Зональный и меридиональный перенос воздуха над II е. с. р.

Характеристика основных воздушных течений в средней и нижней тропосфере за март $2024~\rm \Gamma$. выполнена на основе индексов атмосферной циркуляции, приведенных ниже в таблице и на рис. 1-8-1-10. В данном разделе для характеристики индексов принята следующая терминология: норма — ± 0.3 STD относительно нормы; незначительное отклонение от нормы — $\pm (0.4-0.7)$ STD; значительное отклонение от нормы — ≥ 2.0 STD. Аномалии рассчитаны относительно средних многолетних значений (нормы) за период $1981-2010~\rm \Gamma r$.

Японское море

В марте над Японским морем во всем слое тропосферы преобладал западно-восточный перенос воздуха (значения зональных индексов положительные). Интенсивность зональной компоненты в средней тропосфере была близка к норме (Kz равен 0,1STD), у поверхности земли незначительно превышала норму (Kz - 0,6STD).

Интенсивность межширотного обмена в средней тропосфере над акваторией моря незначительно превышала среднюю многолетнюю (|Km| равен 0,5STD), что определялось усилением северной компоненты обмена (Km составлял -0,6STD). У поверхности земли межширотный обмен и многолетний баланс между меридиональными составляющими были близки к норме (|Km| равен -0,2STD, Km – 0,2STD). Во всем слое тропосферы сохранилось преобладание движений воздуха с севера на юг (значения меридиональных индексов отрицательные).

Охотское море

Над Охотским морем в средней тропосфере движение воздуха с запада на восток оставалось преобладающим (значение зонального индекса положительное), но интенсивность западно-восточного переноса была слабой (Kz равен -0,9STD). В нижнем слое преобладал перенос с востока на запад (значение индекса отрицательное), его интенсивность — незначительно слабее климатической (Kz равен 0,6STD).

Интенсивность межширотного обмена во всем слое тропосферы над морем была относительно слабой, в нижнем слое тропосферы – незначительно слабее нормы (|Km| – -0,9STD и -0,5STD соответственно в средней и нижней тропосфере), что в большей мере определялось ослаблением северной составляющей обмена (Кт равен 0,4STD, как в среднем слое, так и у поверхности земли). В течение месяца в среднем слое тропосферы преобладали движения воздуха с юга на север (значение индекса положительное), у поверхности земли – с севера на юг (значение индекса отрицательное).

Берингово море

Над Беринговым морем в средней тропосфере сохранялось доминирование движений воздуха с запада на восток (значение зонального индекса положительное), у поверхности земли установился перенос с востока на запад (значение индекса отрицательное). Интенсивность зональных течений была близка к норме (Kz равен 0,1STD и 0,0STD соответственно в среднем слое и у поверхности земли).

Интенсивность межширотного обмена в средней тропосфере над акваторией моря была незначительно слабее средней многолетней (|Km| составлял -0,4STD); многолетний баланс между меридиональными составляющими близок к норме (Km - -0,1STD). У поверхности земли

межширотный обмен был слабым (|Km| равен -1,6STD), многолетний баланс между меридиональными составляющими незначительно нарушен в пользу южной компоненты обмена (Km - 0,6STD). В течение месяца во всем слое тропосферы наблюдалось преобладание движений воздуха с юга (значения меридиональных индексов отрицательные).

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

II 16	Уровень		Январь			Февраль	•	Март			
Индекс*	(высота)	значение	ASTD**	STD**	значение	ASTD**	STD**	значение	ASTD**	STD**	
Кz Ям		23811	-0.1	3921	25122	1.0	2736	23128	0.1	4118	
Кz Ом		8582	0.7	4807	11685	1.8	4128	3676	-0.9	3029	
Кz Бм		4926	0.5	4567	9802	1.5	4910	5605	0.1	4673	
Kz 35_50		18450	-1.1	3249	23893	1.0	2820	22492	0.1	3274	
Kz 50_70		6344	0.9	3146	4251	0.3	2455	6558	0.8	2364	
Kz 35_70		11817	0.0	2024	12532	0.7	1641	13795	0.9	1571	
Кт Ям		-3969	-0.1	1376	-3635	0.6	1806	-4747	-0.6	1781	
Кт Ом		2083	0.4	1829	-1601	-1.4	1637	715	0.4	1385	
Кт Бм	500 гПа	1781	-0.6	1249	3627	0.7	1883	1848	-0.1	1334	
Km 35_50	300 IIIa	-1612	-0.6	957	268	1.0	1114	-227	0.4	816	
Km 50_70		-292	-0.2	737	-283	-0.2	896	173	1.0	492	
Km 35_70		-829	-0.5	724	-41	0.4	893	52	0.8	515	
Кт Ям		5411	0.0	1680	5026	-0.6	2353	6451	0.5	2231	
Кт Ом		3866	0.1	1969	2818	-0.4	1476	1706	-0.9	1223	
Кт Бм		3469	-0.8	1787	6244	0.3	3062	3639	-0.4	1881	
Km 35_50		4083	-1.7	843	4603	-0.9	1143	6539	1.3	1024	
Km 50_70		4728	0.0	1304	3659	-0.8	1458	3492	-0.7	1169	
Km 35_70		4389	-0.7	887	3964	-1.0	1123	4764	0.2	801	
Кz Ям		-118	-0.6	1500	165	-0.4	1277	2515	0.6	1035	
Кz Ом		-3264	-0.3	2234	-817	0.8	1961	-825	0.6	1295	
Кz Бм		-3871	0.4	2691	417	2.3	2362	-3144	0.0	2737	
Kz 35_50		744	-1.0	1684	2415	0.2	1516	4099	1.1	1277	
Kz 50_70		-158	0.8	1722	-955	0.6	1442	-1008	0.5	1413	
Kz 35_70		302	0.1	1171	277	0.4	958	1238	1.3	784	
Кт Ям		-5270	0.2	970	-3063	1.6	1052	-2506	0.2	693	
Кт Ом		-3791	0.3	1147	-4677	-0.7	1086	-2163	0.4	1243	
Кт Бм	1000 гПа	-1560	-1.2	944	-463	0.0	1410	158	0.6	1027	
Km 35_50	1000 1114	-2596	-0.6	687	-1127	0.7	796	-506	0.4	533	
Km 50_70		-1362	-0.2	518	-1502	-0.6	619	-551	0.9	364	
Km 35_70		-1848	-0.5	530	-1296	0.0	644	-478	0.9	336	
Кт Ям		7167	-0.2	1321	4199	-1.6	1428	3404	-0.2	953	
Кт Ом		6239	-0.3	1798	7698	0.7	1682	3465	-0.5	1838	
Кт Бм		3488	0.2	1378	4301	0.5	1631	1416	-1.6	1073	
Km 35_50] [4200	-0.1	691	3348	-0.8	795	2797	-0.3	542	
Km 50_70	[3741	0.2	648	4087	0.8	737	1968	-1.4	563	
Km 35_70		3923	0.2	576	3719	0.1	644	2281	-1.2	463	

^{*} Описание индексов приведено в разделе «Терминология».

^{**} Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1981–2010 гг.

Умеренные широты между 35° и 50° с. ш. над II е. с. р.

В зоне умеренных широт между 35° и 50° с. ш. над II е. с. р. перенос воздуха с запада на восток оставался преобладающим во всем слое тропосферы (зональные индексы положительные). Его интенсивность в среднем слое тропосферы была близка к норме (Kz - 0.1STD), у поверхности земли превышала норму (Kz равен 1.1STD).

Интенсивность меридиональных движений воздуха в указанной широтной зоне в средней тропосфере превышала климатическую (|Km| равен 1,3STD), многолетний баланс между меридиональными составляющими был незначительно нарушен в пользу южной составляющей обмена (Km - 0,4STD). У поверхности земли интенсивность меридиональных движений воздуха была близка к средней многолетней (|Km| равен -0,3STD), многолетний баланс между меридиональными составляющими тоже незначительно нарушен в пользу южной составляющей обмена (Km - 0,4STD). Во всем слое тропосферы движения воздуха с севера незначительно преобладали над движениями с юга (значения Km отрицательные).

Широтная зона 50-70° с. ш. над II е. с. р.

В широтной зоне $50-70^{\circ}$ с. ш. над II е. с. р. в средней тропосфере сохранялось доминирование движений воздуха с запада на восток (значение зонального индекса положительное), интенсивность переноса превышала норму (Kz составлял 0,8STD). В нижнем слое тропосферы преобладал перенос воздуха с востока на запад, но его интенсивность была незначительно слабее нормы (Kz равен 0,5STD).

Интенсивность межширотного обмена во всем слое тропосферы в указанной широтной зоне была слабой (|Km| равен -0,7STD и -1,4STD соответственно в среднем слое и у поверхности земли); многолетний баланс между меридиональными составляющими был нарушен в пользу южной составляющей обмена (Кm соответственно равен 1,0STD и 0,9STD). В средней тропосфере в течение месяца сформировалось незначительное преобладание движений воздуха с юга (значение меридионального индекса положительное), в нижнем слое — с севера на юг (значение индекса отрицательное).

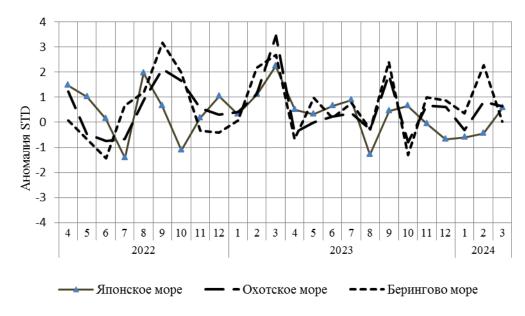


Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Kz) в нижней тропосфере над дальневосточными морями

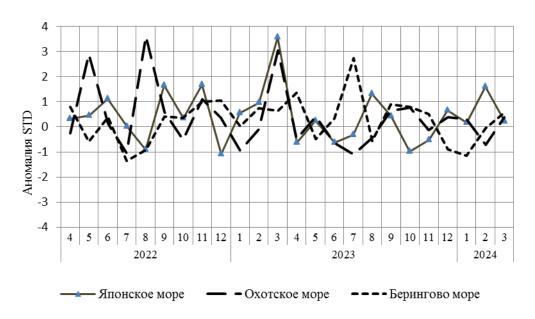


Рис. 1-9 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кт) в нижней тропосфере над дальневосточными морями

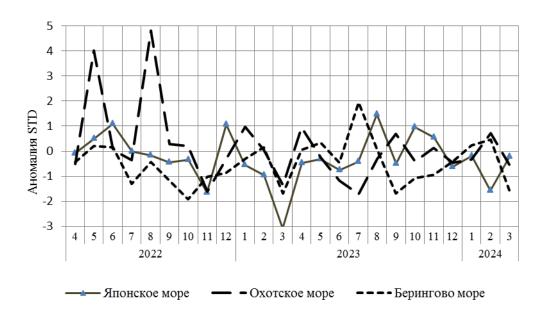


Рис. 1-10 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Кm|) в нижней тропосфере над дальневосточными морями

1.4 Аналог погоды на март 2024 г. для Дальнего Востока

Аналог подбирается для усредненных за месяц полей атмосферного давления у поверхности земли и геопотенциальных высот H_{500} по II е. с. р. Объективным критерием подбора являлся коэффициент корреляции. Учитывалась динамика процесса, барические поля за предшествующие месяцы использовались с весовыми коэффициентами.

Дата аналога для марта 2024 г. – март 1975 г.

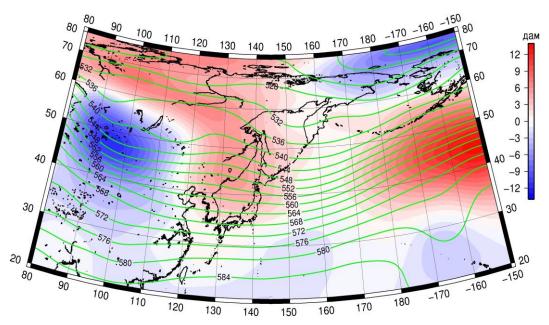


Рис. 1-11 Среднее поле H_{500} (изолинии) и его аномалии (изополосы) в апреле 1975 г. (дам)

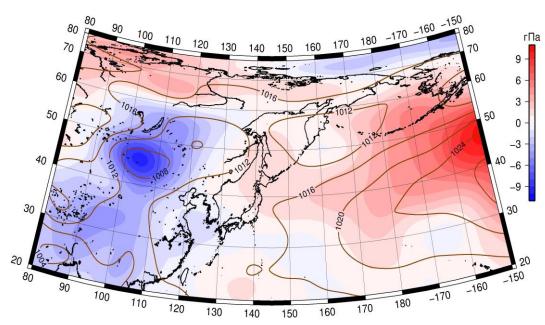


Рис. 1-12 Среднее поле атмосферного давления у поверхности земли (изолинии) и его аномалии (изополосы) в апреле 1975 г. (гПа)

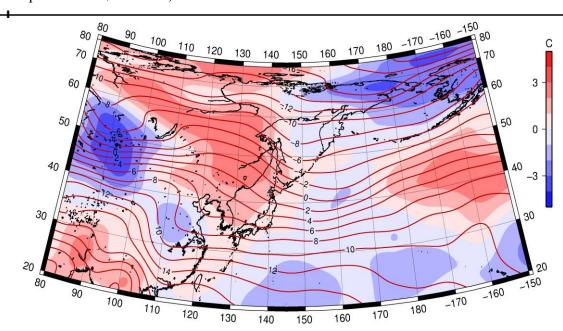


Рис. 1-13 Среднее поле T_{850} (изолинии) и его аномалии (изополосы) в апреле 1975 г. (°С)