НЕОБЫЧАЙНО ЖАРКОЕ ЛЕТО 2021 г. В ПРИМОРСКОМ КРАЕ И НА АКВАТОРИЯХ ДАЛЬНЕВОСТОЧНЫХ МОРЕЙ

Мезенцева Л.И., Гончуков Л.В.

Обсуждаются экстремально высокие температуры воздуха на территории Приморского края и смежных территориях Дальнего Востока и экстремально высокие температуры воды на акваториях дальневосточных морей летом 2021 г. Причина явления — в сочетании климатических факторов, таких как высокий фон углекислого газа, повышенная солнечная активность, что обусловило интенсивный прогрев полушария в начале лета и, в свою очередь, обеспечило смещение циркуляционной системы к полюсу, таким образом, что над обсуждаемой территорией установился субтропический антициклон с соответствующими условиями погоды.

Экстремальная жара летом 2021 г. на Дальнем Востоке и, в том числе на акваториях дальневосточных морей, существенно влияло на все виды деятельности человека, состояние сухопутных и морских видов биоты. Например, некоторые популяции моллюсков в течение сезона претерпели значительные потери численности. Угнеталась растительность. Что побуждает разобраться в генезисе явления, получившего значительный территориальный и временной масштаб.

Работа апробирована в рамках Международной научно-технической конференции «Актуальные проблемы освоения биологических ресурсов Мирового океана», 19 мая 2022 г. [1].

Про явление

Высокий фон температуры воздуха на Дальнем Востоке начал формироваться ещё в начале лета. В мае и июне отмечался значительный прогрев Восточной Азии. На её огромной территории, преимущественно в зоне умеренных и субполярных широт, сформировалось значительное превышение температур воздуха относительно климатической нормы. Аномалии температуры воздуха на территории Якутии в июне достигали +3...+4 °C (рис. 1).

Следует отметить, что начало лето стало жарким для всего северного полушария [2]. Наиболее значительные отклонения от нормы наблюдались на территории Европы, Северной Америки, и Якутии (рис. 2). Во второй половине июня, первой половине июля здесь были установлены новые рекорды тепла.

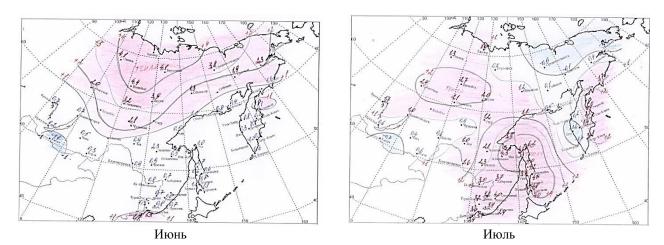


Рис. 1. Распределение аномалий температуры воздуха на территории Дальнего Востока в июне и июле 2021 г. Аномалии получены с использованием климата 1981–2010 гг. Исходными данными послужили средние месячные значения температуры воздуха на станциях Дальнего Востока (работа выполнена в ДВНИГМИ Лось В.В., Жуковым А.В.)

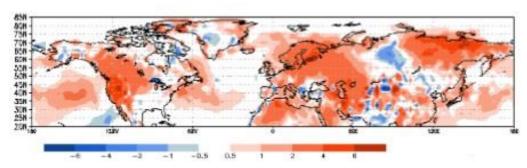


Рис. 2. Распределение аномалий приземной температуры воздуха в первой половине лета 2021 г. Аномалии получены с использованием климата 1985–2010 гг. Исходными данными служили поля приземной температуры воздуха реанализа ЕЦСПП (ERA5) [2]

На территории Приморского и Хабаровского краев самым жарким стал июль, когда температуры воздуха достигали +35...+40 °C, что сочеталось с отсутствием осадков на протяжении полутора месяцев. Лето 2021 г. по оценкам, представленным в работе [2], стало самым жарким для Восточной Азии за весь период инструментальных наблюдений (период около 140 лет).

В таблице 1 для пунктов Приморского и Хабаровского краев представлено распределение индекса засушливости S для периода с апреля по август 2021 г. [3]. Индекс учитывает анормальность температуры воздуха и осадков (использованы данные наблюдений на метеорологических станциях), аномалии нормированы относительно стандартных отклонений. Анализ данных позволяет говорить об экстремальных условиях погоды в июле для территории Приморского края и юга Хабаровского. Индексы засушливости на большинстве станций в июле превышали +4, что следует интерпретировать как экстремально жаркие и сухие условия погоды.

Акватории Японского моря и западная часть Охотского во второй половине лета также были необычайно прогреты. В среднем поверхность этих акваторий уже в июне была теплее средних многолетних показателей на $0.5-2.0\,^{\circ}$ С. В июле аномалии температуры поверхности Японского моря достигли рекордных значений $-+6.5\,^{\circ}$ С, на западе Охотского моря $-+4.0\,^{\circ}$ С (см. рис. 3). Такие значительные положительные аномалии на этих акваториях отмечались впервые в XXI веке [2], и это на фоне общего роста температур воздуха и подстилающей поверхности в целом на полушарии. Очень теплой поверхность указанных акваторий оставалась и в августе (аномалии температуры достигали $+4.0\,^{\circ}$ С), и в осенние месяцы (в октябре и ноябре отклонения от нормы ещё оставались в пределах $+1...+3\,^{\circ}$ С).

Сведения о распределении температуры поверхности (ТПО) дальневосточных морей декадного и месячного разрешения, которые используются в рамках данного исследования, размещаются официальном сайте Дальневосточного регионального на гидрометеорологического института (ФГБУ «ДВНИГМИ») [3]. В свою очередь эти данные получены в результате дешифровки ежедневной спутниковой информации с AVHRR/NOAA и AMSR-E/AQUA, а также измерений температуры поверхности моря с буёв и судов администрацией JMA, в рамках проекта Office of Marine Prediction [4]. Средние многолетние декадные и месячные значения (климат, норма) ТПО в узлах сетки определены в результате усреднения ежедневных данных за период с 1985 по 2015 гг. На их основе рассчитываются декадные и месячные значения аномалий ТПО, представленные на рис. 3. (работа выполнена гл. специалистом отдела «Региональной океанологии и гидрометеорологии» ДВНИГМИ Перуновой Т.А.).

Таблица 1. Распределение индекса засушливости S* для пунктов Приморского и Хабаровского краев весной и летом 2021 г.

Приморский край	Апрель	Май	Июнь	Июль	Август
Анучино	1,4	0,5	1,4	3,3	1,4
Астраханка	1,8	1,6	0,5	4,2	1,3
Богополь	2,2	-0,7	1,2	4,1	-0,1
Владивосток	2,1	1,6	1,7	4,2	2,7
Дальнереченск	2,0	1,4	0,6	4,6	0,7
Пограничный	1,6	0,5	-0,1	3,3	1,2
Посьет	2,8	2,2	1,5	3,7	0,8
Преображение	2,9	-0,3	1,0	4,7	1,7
Рощино	1,6	1,6	0,4	5,6	1,4
Рудная Пристань	2,4	-1,7	0,4	3,0	-0,6
Сосуново	1,5	-1,1	0,3	3,7	-1,0
Терней	2,7	-0,5	0,6	4,6	-0,3
Тимирязевский	1,1	1,2	1,5	4,2	1,5
Турий Рог	1,0	-4,1			
Хабаровский край	Апрель	Май	Июнь	Июль	Август
Аян	0,7	-1,2	1,6	2,9	1,8
Гвасюги	1,8	0,3	-0,1	5,1	1,8
Екатерино-Никольское	1,6	0,2	0,5	4,6	1,1
Им, Полины Осипенко	-0,5	-3,8	-1,1	3,2	0,1
Комсомольск-на-Амуре	-0,1	-0,5	-1,4	3,4	1,0
Нелькан	0,1	1,3	2,1	0,2	3,9
Николаевск-на-Амуре	-0,6	0,0	0,7	2,7	1,5
Охотск	-1,7	0,4	0,6	0,7	2,3
Сковородино	0,6	-3,6	-0,4	-1,1	-0,7
Софийский Прииск	0,5	-0,4	0,3	1,8	-0,2
Сутур	0,4	-0,5	-0,5	0,8	1,4
Тумнин	0,3	0,4	-2,9	4,9	1,4
Урми	0,9	-0,8	1,5	3,7	1,4
Усть-Нюкжа	0,3	-1,6	1,0	1,1	-0,7
Хабаровск_	1,4	-0,3	-0,5	4,3	0,5
Хуларин	-0,6	-0,5	-1,3	0,2	0,1
Чекунда	-2,4	-1,9	-0,3	1,6	-1,1
Чумикан	1,0	-4,0	1,8	2,2	1,4

Примечание: S^* - индекс засушливости, учитывает степень анормальности температуры воздуха и осадков. Положительные значения характеризуют степень засушливости, отрицательные — степень переувлажнения. Значения индекса выше 2 и ниже -2, соответствуют значительной засушливости либо переувлажнению, соответственно.

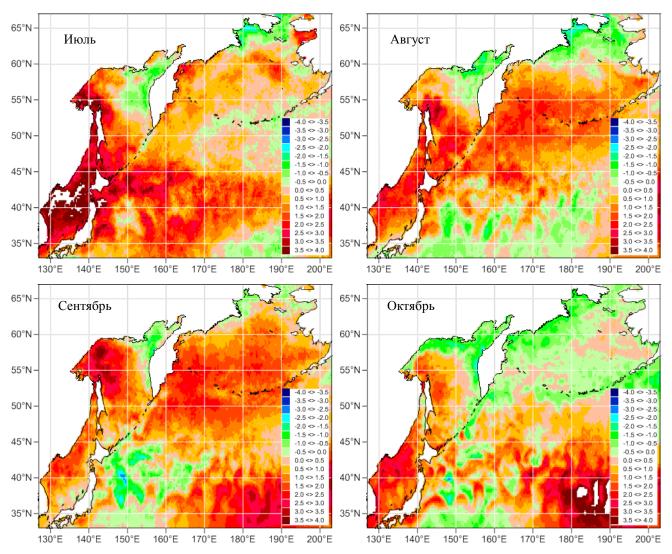


Рис. 3. Распределение средних месячных аномалий температуры поверхности океана в июлеоктябре 2021 г. на акваториях дальневосточных морей и северо-западной части Тихого океана

Генезис явления

Исследуя причины аномально теплого лета 2021 года на Дальнем Востоке, следует начинать с того, что очень жаркой случилась первая половина лета, и не только на Дальнем Востоке, но и в целом на полушарии [2]. В результате прогрева материков, Азии и Северной Америки, преимущественно в зоне умеренных и субполярных широт, атмосферная циркуляционная система северного полушария значительно поднялись к полюсу. Это относится как к поясу высокого давления, обычно располагающегося в субтропиках, так и зоне западно-восточного переноса умеренных широт. Последняя была значительно вытеснена в субполярную климатическую зону. Об этом свидетельствует распределение барических объектов в средней тропосфере и у поверхности земли в июле, представленное на рис. 4. Высотное барическое поле представлено в виде поля геопотенциальных высот изобарической поверхности 500 гПа.

В средней тропосфере отчетливо прослеживается доминирование положительных аномалий геопотенциальных высот поля H_{500} — тропосфера была теплее обычного, над умеренными широтами значительно теплее. Субтропический пояс высокого давления мощнее климатического состояния и приподнят к северу на $5-7^{\circ}$ от традиционного положения. У поверхности земли тихоокеанский субтропический антициклон доминировал над всей северной частью Тихого океана. Его отроги распространились на материк, определяя на востоке Азии антициклональный субтропический тип погодных условий. В

зоне его влияния – территория Приморского края, юг Хабаровского, Японское море и южная половина Охотского моря.

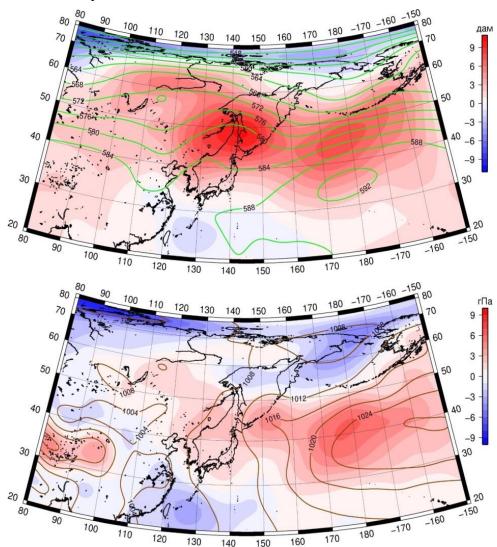


Рис. 4. Барические поля средней тропосферы (карта AT₅₀₀) и у поверхности земли над Восточной Азией и северо-западной частью Тихого океана в июле 2021 г. с аномалиями геопотенциальных высот и атмосферного давления, соответственно

Используя интегральные зональные и меридиональные индексы переноса воздуха через выделенные районы региона, можно выявить следующие особенности атмосферной циркуляции в период формирования аномальной жары. Распределение таких индексов над дальневосточными морями: Японским, Охотским и Беринговым морями, и над двумя широтными зонами региона, ограниченными 90 и 180 меридианами, представлено в таблице 2. Техника расчетов подробно обсуждалась в [3].

В июле 2021 г. в широтной зоне 50–70° с. ш. региона отмечался очень активный западный перенос воздуха, его интенсивность превышала климатическую (индексы зонального переноса достигали 1,9–2,3ASTD (ASTD – стандартизованная аномалия). Зональный поток над Охотским морем и Беринговым морем был также очень активным. Эта активность отсекала (запирала) арктические воздушные массы от вторжений в низкие широты. Одновременно над умеренными широтами региона на фоне слабой зональности воздушных течений сформировался активный (превышающий норму) меридиональный перенос воздуха положительного знака (с юга). Такое распределение движений воздуха в тропосфере продолжало способствовать формированию и нагнетанию тропического воздуха далеко от района его традиционного зарождения.

Таблица 2. Распределение атмосферных интегральных индексов зонального и меридионального переноса воздуха через выделенные районы

Индекс*	Уровень	Июнь		Июль		Август	
	(высота)	значение	ASTD**	значение	ASTD**	значение	ASTD**
Кz Ям		8717	-0,4	4469	-2,0	9494	-0,7
Кг Ом		5288	0,1	7625	0,7	5373	-1,7
Кz Бм		4439	0,1	9454	1,2	6317	-1,0
Kz 35_50		14050	1,0	7880	-2,0	11746	0,5
Kz 50_70		4259	-0,7	7677	1,9	4969	-1,1
	500						
Кт Ям	гПа	788	0,8	1172	0,8	2735	1,1
Кт Ом		-2747	-0,8	-2503	-1,0	-3228	-1,5
Кт Бм		-439	0,2	-166	0,0	423	0,0
Km 35_50		-227	0,4	396	0,9	571	1,0
Km 50_70		-395	0,1	-151	0,5	-577	-1,1
Кz Ям		2588	0,8	1266	-0,5	23	-0,6
Кz Ом		1330	0,3	2644	1,2	483	-0,9
Кz Бм		448	-0,3	4192	1,8	1734	-0,7
Kz 35_50		2719	0,9	2146	0,3	1466	0,0
Kz 50_70		135	0,6	1227	2,3	-161	-0,4
	1000 гПа						
Кт Ям		2568	1,0	2394	0,5	1525	0,7
Кт Ом		653	-0,4	970	-0,3	78	-0,7
Кт Бм		70	-0,1	1059	0,9	348	-0,6
Km 35_50		506	-1,3	1495	1,3	874	-0,3
Km 50_70		44	-0,7	420	0,2	-40	-1,0

Примечание: Kz — интегральный зональный индекс, Km — интегральный меридиональный индекс. $500~\Gamma\Pi a$ — изобарическая поверхность $500~\Gamma\Pi a$ (средняя тропосфера), $1000~\Gamma\Pi a$ — изобарическая поверхность $1000~\Gamma\Pi a$ (нижняя тропосфера, вблизи поверхности земли). Положительные значения индексов характеризуют перенос воздуха с запада на восток и с юга на север, соответственно для Kz и Km. ASTD — стандартизованная аномалия.

Некоторым побочным эффектом сложившихся циркуляционных условий в регионе стало ослабление тропического циклогенеза на северо-западе Тихого океана [3]. Он был локализован в небольшой зоне вблизи юго-восточного побережья Азии (на приземной карте погоды в этой зоне сформировались отрицательные аномалии атмосферного давления, см. рис. 4). Пояс высокого давления к тому же надежно отсекал выход тропических циклонов в умеренные широты. На рис. 5 приведены треки тропических циклонов, которые выходили на дальневосточные моря в 2021 г. и, для сравнения, в 2019 г.

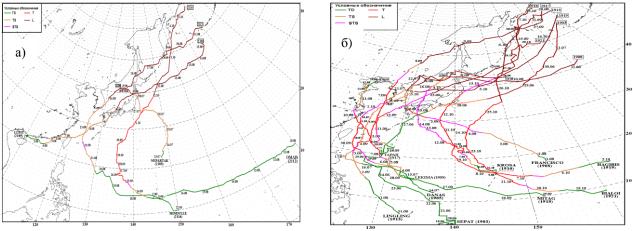


Рис. 5. Траектории тропических циклонов, оказавших прямое или косвенное воздействие на погоду дальневосточных морей и прилегающие территории России: а) в 2021 г., б) в 2019 г.

Библиографический список

- 1. Мезенцева Л.И. Гончуков Л.В. Генезис необычайно жаркого лета 2021 г. на Дальнем Востоке, в том числе на акватории дальневосточных морей // Актуальные проблемы освоения биологических ресурсов Мирового океана: материалы VII Междунар. науч.-техн. Конф. [Электронный ресурс]. Владивосток: Дальрыбвтуз, 2022. С. 269–275. ISBN 978-5-88871-757-8
- 2. Куликова И.А., Круглова Е.Н., Сумерова К.А., Хан В.М. Волны тепла и блокирующие антициклоны летом 2021 года в прогнозах и наблюдениях // Гидрометеорологические исследования и прогнозы. 2022. № 1 (383). С. 7–21.
- 3. Ежемесячный гидрометеорологический бюллетень ФГБУ «ДВНИГМИ» [электронный ресурс]. URL: http://ferhri.org/napravleniya-rabot/proekty/2017-07-28-00-41-16.html (дата последнего обращения: 5 июня 2022 г.).
- 4. Ежедневные данные температуры поверхности Мирового океана [электронный ресурс]. URL: https://www.data.jma.go.jp/gmd/goos/data/rrtdb/jma-pro.html. (дата последнего обращения: 15 апреля 2022 г.)